
MrT

Jason Berger

Aug 10, 2023

USING MRT:

1 Getting Started 1

2 Tutorial 5

3 mrtutils 19

4 PolyPacket 37

5 Modules 51

6 Architecture 145

7 Adding Modules 149

8 Coding Practices 153

9 MrT Framework 155

i

ii

CHAPTER

ONE

GETTING STARTED

This section of the document gives a basic overview of installing and using the modules

1.1 Installation

The code modules themselves are imported as submodules, so there are no libraries that need to be installed. But there
is a toolset mrtutils which makes it easier to manage the modules.

pip install mrtutils

1.2 Integrating MrT into your project

cd <path/to/project>

mrt-config <relative/path/for/MrT/root>

Note: If no path is provided, it will default to ./MrT and create the directory if it does not exist

This will open the mrt-config tool which allows you to select which modules you would like to integrate into your
project. The UI is based on menuconfig to be as flexible as possible in terms of where you can run it, ie in containers
or remote development environments over ssh.

1

MrT

Note: MrT Modules are added as git sub-modules, if you are in a directory that does not contain a git repo, it will
initialize one.

mrt-config-gui
If you prefer to use a gui interface, you can use the pyQt5 based mrt-config-gui:

mrt-config-gui <relative/path/for/MrT/root>

2 Chapter 1. Getting Started

MrT

1.2. Integrating MrT into your project 3

MrT

4 Chapter 1. Getting Started

CHAPTER

TWO

TUTORIAL

This is a guide for incorporating MrT modules into a project. The guides walks through the full implementation of
a project using MrT, a generated device driver, and a custom messaging protocol. This guide will be broken up into
stages.

The project files are all in the mrt-tutorial repo and there is a ‘reference’ branch with Tags showing the end of each
stage

At head of the master branch is the project start. An STM32 project has already been created to target the STM32L4 (
Their IOT node dev board)

• Uart1: 115200 baud

• I2C2

• GPIO PB14 as output, labeled as LED_GRN

Note: The setup for this project is not in the scope of this tutorial, but using STM32CUBE is pretty well documented
online

2.1 Step 1: Installing tools

MrT modules are just individual git repositories that get included in your project as submodules . You could simply
add them as submodules manually, but this would require looking up the urls, and making sure the path to each module
is correct, because some modules reference others.

To make this easier, you can use the mrt-config tool from the mrttutils package.

mrttutils is a python package managed with pip

pip3 install mrtutils

5

https://mrt.readthedocs.io/en/latest/pages/tutorial/tutorial.html
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://mrt.readthedocs.io/en/latest/index.html
https://mrt.readthedocs.io/en/latest/index.html

MrT

2.2 Step 2: Add MrT Modules

Once you have installed mrtutils, adding modules is very simple. just run mrt-config and tell it where you want to put
the modules (It will create the directory)

cd /path/to/mrt-tutorial
mrt-config MrT

This will open the mrt-config gui:

This tool will open a menuconfig style UI that lets you browse the available modules and select the ones you want to
include

For Now select the following modules:

Platforms/STM32
this is the absctraction layer for STM32 MCUs. it provides definitions/Macros to map hardware
interaction with the STM32 HAL

Platforms/Common
this module is required when using any platform abstraction layer

Devices/RegDevice
This is the base module for generic register based devices. It is needed later in [Creating Device
Driver using mrt-device tool](#mrt-device)

Once you have selected the required modules, press q to quite, then y when prompted to save changes

You should now have a folder called ‘MrT’ in your projects directory with the submodules inside of it.

Now you need to configure the project to use these submodules. Each platform module should have instructions in its
README.

Here are the instructions from STM32/README.md :

6 Chapter 2. Tutorial

https://gitlab.com/uprev/public/mrt/modules/Platforms/STM32/-/blob/master/README.rst

MrT

Note: after importing modules, right click the project and hit refresh so it sees the new directories

To use the STM32 platform, cofigure the following settings:

Project->Properties->C/C++ General->Path and Symbols : * Under the Symbols tab add a symbol named
MRT_PLATFORM with the value MRT_STM32_HAL* * Under the Source Location tab click add and select the
Modules directory under Mr T* * Under the Includes tab, click add and add the path to the Modules directory under
Mr T

Build the project

2.3 Step 3: Toggle LED

Now we can use the MrT abstraction layer for stm32. We are going to blink the LED on the board just as a basic
example. Add the following code snippets:

main.c:26 (in the USER CODE INCLUDES section)

#include "Platforms/Common/mrt_platform.h" /* This will include the stm32 layer based on␣
→˓the MRT_PLATFORM symbol we set*/

main.c:108 (in the USER CODE WHILE section)

/** STM32 HAL does not have a type for pins, all of its functions use (port,pin). MRT_
→˓GPIO() is a macro that wraps them
* This is so that device drivers have a single struct for pins
*/

MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),HIGH); //set the pin high
MRT_DELAY_MS(1000); //wait 1000 ms
MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),LOW); //set the pin low
MRT_DELAY_MS(1000); //wait 1000 ms

Now build and run the project, the green LED on the board should blink!

2.4 Step 4: Create a device driver

Obviously an abstraction layer to toggle a gpio is a bit overkill. But the point of this is to write device drivers that can
run on any platform. So now we are going to create a device driver for the HTS221 temperature and humidity sensor
on the board.

For this we will use the mrt-device tool

This is part of mrtutils, so it is already installed.

Normally you would create a device driver as a submodule, so that it can be re-used as a MrT module, but for the
purpose of this tutorial we will just create it in a subdirectory. mrt-device can generate a template to get you started:

mkdir MrT/Modules/Devices/hts221
cd MrT/Modules/Devices/hts221
mrt-device -t my_device

now you should have a new file ‘my_device.yml’ to fill out. in the ‘doc’ folder there are 2 files to looks at:

2.3. Step 3: Toggle LED 7

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html

MrT

• device.yml - this is the yaml file for the device driver that I already created

• hts221.pdf - this is the section of the datasheet that describes the registers.

Comparing the two files and referencing the mrt-device wiki should help you get an idea of how to structure the file.
(A lot of the information at the top is not really needed, but good for documentation)

Once you feel comfortable with the structure, generate the driver:

mrt-device -i my_device.yml -o .

This will create 3 new files:

• hts221.h - header for driver

• hts221.c - source for driver

• hts221_regs.h - various symbols and macros for device registers

adding the -d flag will generate documentation:

mrt-device -i my_device.yml -o . -d .

Now we have a basic driver with access to all of the register/fields in the device. If the temperature and humidity values
could be read directly, wed be done.. But they cant. So we just need to add the logic.

This particular device has a pretty convoluted calibration table that has to be read to get conversion con-
stants. You can ignore the logic involved, the take away is that there are code blocks in the driver that
will not be overwritten if you regenerate the driver. It also shows use of the devices macros for reading
fields/registers

First we are going to add some properties to the device struct:
hts221.h:85 between the user-block-struct tags :

int mPrevTemp;
int mPrevHum;

struct{
int16_t T0_out;
int16_t T1_out;
int16_t T0_degC;
int16_t T1_degC;
uint8_t H0_rH;
uint8_t H1_rH;
int16_t H0_T0_OUT;
int16_t H1_T0_OUT;

} mCalData;

Next add functions for reading temperature and humidity :
hts221.h:100 between the user-block-bottom tags :

/**
* @brief reads humidity from device
* @param dev ptr to hts221 device
* @return relative humidity in 1/100th of a percent. i.e. 4520 = %45.2

(continues on next page)

8 Chapter 2. Tutorial

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html

MrT

(continued from previous page)

*/
int hts_read_humidity(hts221_t* dev);

/**
* @brief reads temperature from device
* @param dev ptr to hts221 device
* @return temperature in 1/100th of a degress C. i.e. 2312 = 23.12 C
*/
int hts_read_temp(hts221_t* dev);

Add the code to get calibration constants from calibration table :
hts221.c:40 in the user-block-init section :

dev->mPrevHum =0;
dev->mPrevTemp =0;

/* device requires a bit ORd with register address to auto increment reg addr */
dev->mRegDev.mAutoIncrement = true;
dev->mRegDev.mAiMask = 0x80;

/* Load calibration data */
uint8_t H0_rh_x2, H1_rh_x2, T0_degC_x8, T1_degC_x8, T1T0_msb;

/* These registers can be read directly into the cal values */
dev->mCalData.H0_T0_OUT = hts_read_reg(dev, &dev->mH0T0Out);
dev->mCalData.H1_T0_OUT = hts_read_reg(dev, &dev->mH1T0Out);
dev->mCalData.T0_out = hts_read_reg(dev, &dev->mT0Out);
dev->mCalData.T1_out = hts_read_reg(dev, &dev->mT1Out);

/* These registers need to be processed to get the values we need */
H0_rh_x2 = hts_read_reg(dev, &dev->mH0RhX2);
H1_rh_x2 = hts_read_reg(dev, &dev->mH1RhX2);
T0_degC_x8 = hts_read_reg(dev, &dev->mT0DegcX8);
T1_degC_x8 = hts_read_reg(dev, &dev->mT1DegcX8);
T1T0_msb = hts_read_reg(dev, &dev->mT1t0Msb);

/* These values just need to be divided down (for some reason they are stored with a␣
→˓multiplier of 2..) */

dev->mCalData.H0_rH = H0_rh_x2 >> 1;
dev->mCalData.H1_rH = H1_rh_x2 >> 1;

/* T0 and T1 are 10 bits, the MSBs are stored together in the T1T0_MSB Register.␣
→˓They have to be put together, and then divided by 8.. (see link to application note) */

dev->mCalData.T0_degC = ((uint16_t) T0_degC_x8 | (((uint16_t)(T1T0_msb & 0x03)) <<␣
→˓8)) >> 3;

dev->mCalData.T1_degC = ((uint16_t) T1_degC_x8 | (((uint16_t)(T1T0_msb & 0x0C)) <<␣
→˓6)) >> 3;

The driver is generated with a ‘test’ function. we will add the logic to test the devices connection:
hts221.c:97 in the user-block-test section :

2.4. Step 4: Create a device driver 9

MrT

if(hts_read_reg(dev, &dev->mWhoAmI) == HTS_WHO_AM_I_DEFAULT)
{

return MRT_STATUS_OK;
}

Finally add the code for the temperature and humidity functions:
hts221.c:108 in the user-block-bottom section :

int hts_read_humidity(hts221_t* dev)
{

int16_t raw_adc;
float tmp_f;

//check to make sure data is ready, if not just use previous value
if(! hts_check_flag(dev,&dev->mStatus, HTS_STATUS_HUM_READY))
{

return dev->mPrevHum;
}

//get raw adc value
raw_adc = hts_read_reg(dev, &dev->mHumidityOut);

//Use calibration coefs to interpolate data to RH%
tmp_f = ((float)(raw_adc - dev->mCalData.H0_T0_OUT) * (float)(dev->mCalData.H1_rH -␣

→˓dev->mCalData.H0_rH) / (float)(dev->mCalData.H1_T0_OUT - dev->mCalData.H0_T0_OUT)) + ␣
→˓dev->mCalData.H0_rH;

dev->mPrevHum = tmp_f * 100;
return dev->mPrevHum;

}

int hts_read_temp(hts221_t* dev)
{

int16_t raw_adc;
float tmp_f;

//check to make sure data is ready, if not just use previous value
if(! hts_check_flag(dev,&dev->mStatus, HTS_STATUS_TEMP_READY))
{

return dev->mPrevTemp;
}

//get raw adc value
raw_adc = hts_read_reg(dev, &dev->mTempOut);

//Use calibration coefs to interpolate data to deg C
tmp_f = ((float)(raw_adc - dev->mCalData.T0_out) * (float)(dev->mCalData.T1_degC -␣

→˓dev->mCalData.T0_degC) / (float)(dev->mCalData.T1_out - dev->mCalData.T0_out)) + dev-
→˓>mCalData.T0_degC;

(continues on next page)

10 Chapter 2. Tutorial

MrT

(continued from previous page)

dev->mPrevTemp = tmp_f * 100;
return dev->mPrevTemp;

}

Now lets try out our driver:
main.c:27 USER CODE includes section

#include "Devices/hts221/hts221.h"

main.c:95 USER CODE 2 section

uint32_t ticks =0;
int temperature;
int humidity;
hts221_t hts; /* create instance of hts221 device*/
hts_init_i2c(&hts, &hi2c2); /* Initialize it on I2C2 bus*/

if(hts_test(&hts) == MRT_STATUS_OK) /* Turn on LED if device passes test */
{

MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),HIGH);
}

/* Set flags/fields for start up and 1hz data*/

hts_set_flag(&hts, &hts.mCtrl1, HTS_CTRL1_PD); /* set PD flag of CTRL 1 register, to␣
→˓turn on device*/
hts_set_ctrl1_odr(&hts, HTS_CTRL1_ODR_1HZ); /* Set ODR field in CTRL1 Register to␣

→˓1Hz*/

/* OR we could use the configuration we created with: HTS_LOAD_CONFIG_AUTO_1HZ(&hts) */

main.c:122 Replace entire while loop:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

/* Every 500 ms see if new data is ready, and read it */
MRT_EVERY(50, ticks) /* convenience macro for systick timing*/
{
if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_

→˓READY))) /*wait until both flags are set */
{
temperature = hts_read_temp(&hts);
humidity = hts_read_humidity(&hts);

}
}
ticks++;
MRT_DELAY_MS(10);

(continues on next page)

2.4. Step 4: Create a device driver 11

MrT

(continued from previous page)

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}

build the project and run it. The led should turn on to show it passed the device test. If you step through code you will
see valid temperature/humidity readings.

2.5 Step 5: Create a PolyPacket Service

Now That we have a working device driver, lets create a messaging protocol so we can ask the device for data over the
com port.

first we will need to add in some more MrT modules to support polypacket. back out to your projects root directory
and open mrt-config again:

cd /path/to/project/root
mrt-config MrT

Select the following modules to import :

• Utilities/PolyPacket

• Utilities/JSON

• Utilities/COBS

Once they are imported, create your protocol template:

poly-make -t my_protocol

There should now be a file named my_protocol.yml in the root of your project. You can keep this wherever you want,
but I find it handy to have it in the root of the project when debugging.

now modify the file to match the my_protocol.yml in the doc folder. For a detailed eplanation of the document reference
PolyPacket.wiki/Defining-a-protocol

Once the descriptor is filled out, create a directory for your service, and then generate your service with an application
layer:

mkdir MrT/Modules/my_service
poly-make -i my_protocol.yml -a -o MrT/Modules/my_service/

Add “-d doc “ to create an ICD in the doc folder

This will generate 4 files:

• my_protocolService.h - header for service, you should never need to edit this

• my_protocolService.c - source for service, you should never need to edit this

• app_my_protocol.h - header for application layer

• app_my_protocol.c - source for application layer, this is where you will fill out packet handlers

First include the service:
main.c:28:

12 Chapter 2. Tutorial

https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html#step-1-defining-a-protocol

MrT

#include "my_service/app_my_protocol.h"

Next intialize the app layer
main.c:118:

/* OR we could use the configuration we created with: HTS_LOAD_CONFIG_AUTO_1HZ(&hts) */

app_my_protocol_init(&huart1); /* initialize the app layer and give it a uart␣
→˓interface */

/* For the UART RX, we are going to use some low level tricks for the stm32, because␣
→˓their HAL layer is not great at receiving
* unkown lengths of data. This will set us up with an interrupt everytime a new byte␣

→˓comes in. its just cleaner and less hassle
*/
UART_MASK_COMPUTATION(&huart1);

→˓ /* Sets Uart1's␣
→˓internal data mask based on STMCUBE configuration*/
SET_BIT(huart1.Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); /* Enable the␣

→˓interrupts for STM32 UART receive */

/* USER CODE END 2 */

Then add a call to process our service in the main loop
main.c:118:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

/* Every 500 ms see if new data is ready, and read it */
MRT_EVERY(100, ticks) /* convenience macro for systick timing*/
{
if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_

→˓READY))) /*wait until both flags are set */
{
temperature = hts_read_temp(&hts);
humidity = hts_read_humidity(&hts);

}
}
app_my_protocol_process(); /* process our service*/
ticks++;
MRT_DELAY_MS(10);

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}

Now lets use the uart interrupt to feed our service

2.5. Step 5: Create a PolyPacket Service 13

MrT

stm32l4xx_it.c:26

#include "my_service/app_my_protocol.h"

stm32l4xx_it.c:201

/**
* @brief This function handles USART1 global interrupt.
*/

void USART1_IRQHandler(void)
{
/* USER CODE BEGIN USART1_IRQn 0 */

/* If RX-Not-Empty flag is set, then we have a byte of data */
if(huart1.Instance->ISR & UART_FLAG_RXNE)
{
uint8_t data = (uint8_t)(huart1.Instance->RDR & (uint8_t)huart1.Mask); /* Mask Off␣

→˓Data */
mp_service_feed(0, &data ,1); /* feed the byte to our service */

}

/* USER CODE END USART1_IRQn 0 */
HAL_UART_IRQHandler(&huart1);
/* USER CODE BEGIN USART1_IRQn 1 */

/* USER CODE END USART1_IRQn 1 */
}

Since we are using the interrupt we can disable the uart_read in our application layer:
app_my_protocol.c:66 - comment out iface0_read()

void app_my_protocol_process()
{
/* read in new data from iface 0*/
// iface0_read();

/* process the actual service */
mp_service_process();

}

Before we add anything else, lets test our service. Find the com port that the device is on in device manager. in my
case it is COM3

for WSL, COM ports are mapped to /dev/ttyS<Port Number>

open the poly-packet interpretter:

poly-packet -i my_protocol.yml

inside of poly-packet connect over serial with a baud of 115200

connect serial:/dev/ttyS3:115200
Ping

note: every protocol is built with a ping and ack packet

14 Chapter 2. Tutorial

MrT

You should see your ‘Ping packet go out, and an ack returned’

______ _ ______ _ _
| ___ \ | | | ___ \ | | | |
| |_/ /__ | |_ _| |_/ /_ _ ___| | _____| |_
| __/ _ \| | | | | __/ _` |/ __| |/ / _ \ __|
| | | (_) | | |_| | | | (_| | (__| < __/ |_
_| ___/|_|__, _| __,_|___|_|____|__| [my_protocol protocol]

__/ |
|___/

Port Opened : /dev/ttyS3

--> { "packetType" : "Ping", "icd" : 3174876862}
<-- { "packetType" : "Ack"}

tip: inside poly-packet, you can press tab to see available packets to send

2.6 Step 6: Customize the service

Now that we have our service working, lets make it do something useful. When we created the protocol description,
we set up a poly_struct named ‘Device’. We are going to use this to store and serve information about the device.

First we will make changes to our application layer, we will add our struct, and clean up some un-used sections while
we are there

app_my_protocol.c:8

/***
Application Layer

***/

#include "app_my_protocol.h"
mrt_uart_handle_t ifac0;

mp_struct_t myDevice; /* create device struct for storing/serving our data */

static inline HandlerStatus_e iface0_write(uint8_t* data, int len)
{
/* Place code for writing bytes on interface 0 here */
MRT_UART_TX(ifac0, data, len, 10);

return PACKET_SENT;
}

/***
App Init/end

***/
void app_my_protocol_init(mrt_uart_handle_t uart_handle)
{
/* Set ifac0 to uart handle, this can use any peripheral, but uart is the most common␣

→˓case */
(continues on next page)

2.6. Step 6: Customize the service 15

MrT

(continued from previous page)

ifac0 = uart_handle; //set interface to uart handle

//initialize service
mp_service_init(1,16);

mp_struct_build(&myDevice, MP_STRUCT_DEVICE); /* builds the generic poly_struct into a␣
→˓Device struct */
mp_setDeviceName(&myDevice, "Jerry"); /* set the 'Name' field of the device␣

→˓struct */

mp_service_register_bytes_tx(0, iface0_write);

}

Next we can fill out our packet handlers.
The only packets we need to handle are: getdata, whoAreYou, and setName. the rest of the handlers can be deleted.
(They are defined weakly in the service layer)

app_my_protocol.c:63

/***
Packet handlers

***/
/**
*@brief Handler for receiving getData packets
*@param getData incoming getData packet
*@param sensorData sensorData packet to respond with
*@return handling mp_status
*/

HandlerStatus_e mp_GetData_handler(mp_packet_t* mp_getData, mp_packet_t* mp_sensorData)
{

mp_packet_copy(mp_sensorData, &myDevice); /* copy fields from 'myDevice' into the␣
→˓response packet*/

return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

/**
*@brief Handler for receiving whoAreYou packets
*@param whoAreYou incoming whoAreYou packet
*@param myNameIs myNameIs packet to respond with
*@return handling mp_status
*/

HandlerStatus_e mp_WhoAreYou_handler(mp_packet_t* mp_whoAreYou, mp_packet_t* mp_myNameIs)
{

mp_packet_copy(mp_myNameIs, &myDevice); /* copy fields from 'myDevice' into the␣
→˓response packet*/

return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

(continues on next page)

16 Chapter 2. Tutorial

MrT

(continued from previous page)

/**
*@brief Handler for receiving setName packets
*@param setName incoming setName packet
*@return handling mp_status
*/

HandlerStatus_e mp_SetName_handler(mp_packet_t* mp_setName)
{

mp_packet_copy(&myDevice, mp_setName); /* Copy fields from incoming packet to 'myDevice
→˓' */

return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

** Now we will use the sensor data from our device driver to set the fields of ‘myDevice’

make it available to our main.c

app_my_protocol.h:11

extern mp_struct_t myDevice;

Then add code to set the values in our main loop:

main.c:129

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

/* Every 500 ms see if new data is ready, and read it */
MRT_EVERY(100, ticks) /* convenience macro for systick timing*/
{
if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_

→˓READY))) /*wait until both flags are set */
{
temperature = hts_read_temp(&hts);
humidity = hts_read_humidity(&hts);

mp_setTemp(&myDevice, temperature);
mp_setHumidity(&myDevice, humidity);

}
}
app_my_protocol_process(); /* process our service*/
ticks++;
MRT_DELAY_MS(10);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}

2.6. Step 6: Customize the service 17

MrT

build!

2.7 Step 7: Interact with poly-packet

Now that our service is complete, we can interact with it using the poly-packet cli

poly-packet -i my_protocol.yml -c connect serial:/dev/ttyS3:115200

-c lets you pass a command on start-up, I use it as a convenient way to connect

Once you are in the CLI, you can send some packets

whoAreYou
getData
setName deviceName: Jason Berger
whoAreYou

produced the following output:

______ _ ______ _ _
| ___ \ | | | ___ \ | | | |
| |_/ /__ | |_ _| |_/ /_ _ ___| | _____| |_
| __/ _ \| | | | | __/ _` |/ __| |/ / _ \ __|
| | | (_) | | |_| | | | (_| | (__| < __/ |_
_| ___/|_|__, _| __,_|___|_|____|__| [my_protocol protocol]

__/ |
|___/

Port Opened : /dev/ttyS3

--> { "packetType" : "whoAreYou"}
<-- { "packetType" : "myNameIs", "deviceName" : "Jerry"}

--> { "packetType" : "getData"}
<-- { "packetType" : "sensorData", "temp" : 2865, "humidity" : 4939}

--> { "packetType" : "setName", "deviceName" : "Jason Berger"}
<-- { "packetType" : "Ack"}

--> { "packetType" : "whoAreYou"}
<-- { "packetType" : "myNameIs", "deviceName" : "Jason Berger"}

18 Chapter 2. Tutorial

CHAPTER

THREE

MRTUTILS

mrtutils is a collection of tools for working with the MrT framework. It includes tools for managing modules, creating
device drivers, and implementing custom BLE profiles on supported platforms

pip install mrtutils

3.1 mrt-config

mrt-config is the tool used to manage the MrT Modules in your project.

cd <path/to/project>
mrt-config <relative/path/for/MrT/root>

Note: If no path is provided, it will default to ./MrT and create the directory if it does not exist

This will open the mrt-config tool which allows you to select which modules you would like to integrate into your
project. The UI is based on menuconfig to be as flexible as possible in terms of where you can run it, ie in containers
or remote development environments over ssh.

19

MrT

Note: MrT Modules are added as git sub-modules, if you are in a directory that does not contain a git repo, it will
initialize one.

3.2 mrt-device

The mrt-device tool allows user to create driver code from device description files. This provides very consistent drivers
and also creates an easily parseable device file as a byproduct. This can be used for better documentation as well as a
basis for automated testing of hardware.

Note: The code generated from this tool requires the Mrt RegDev module

3.2.1 Step 1: Define device:

Devices are defined with a YAML file.

To generate a blank template to start from:

mrt-device -t /path/to/file.yml

example from hts221 driver

name: HTS221
description: Humidity and Temperature Sensor
category: Device
requires: [RegDevice,Platform]
datasheet: https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/
→˓ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.
→˓DM00116291.pdf
mfr: STMicroelectronics
mfr_pn: HTS221TR
digikey_pn: 497-15382-1-ND

prefix: HTS
bus: I2C
i2c_addr: 0xBE

###
→˓##################
Registers ␣
→˓ #
###
→˓##################

registers:
- WHO_AM_I: { addr: 0x0F , type: uint8_t, perm: R, desc: Id Register, default: 0xBC}
- AV_CONF: { addr: 0x10 , type: uint8_t, perm: RW, desc: Humidity and temperature␣

(continues on next page)

20 Chapter 3. mrtutils

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html
https://gitlab.com/uprev/public/mrt/modules/Devices/Sensors/HTS221

MrT

(continued from previous page)

→˓resolution mode}
- CTRL1: { addr: 0x20 , type: uint8_t, perm: RW, desc: Control register 1}
- CTRL2: { addr: 0x21 , type: uint8_t, perm: RW, desc: Control register 2}
- CTRL3: { addr: 0x22 , type: uint8_t, perm: RW, desc: Control register 3}
- STATUS: { addr: 0x27 , type: uint8_t, perm: R, desc: Status register}
- HUMIDITY_OUT: { addr: 0x28 , type: int16_t, perm: R, desc: Relative humidity data }
- TEMP_OUT: { addr: 0x2A , type: int16_t, perm: R, desc: Temperature data}

- H0_rH_x2: { addr: 0x30 , type: uint8_t, perm: R, desc: Calibration data}
- H1_rH_x2: { addr: 0x31 , type: uint8_t, perm: R, desc: Calibration data}
- T0_DEGC_x8: { addr: 0x32 , type: uint8_t, perm: R, desc: Calibration data}
- T1_DEGC_x8: { addr: 0x33 , type: uint8_t, perm: R, desc: Calibration data}
- T1T0_MSB: { addr: 0x35 , type: uint8_t, perm: R, desc: Calibration data}
- H0_T0_OUT: { addr: 0x36 , type: int16_t, perm: R, desc: Calibration data}
- H1_T0_OUT: { addr: 0x3A , type: int16_t, perm: R, desc: Calibration data}
- T0_OUT: { addr: 0x3C , type: int16_t, perm: R, desc: Calibration data}
- T1_OUT: { addr: 0x3E , type: int16_t, perm: R, desc: Calibration data}

###
→˓##################
FIELDS ␣
→˓ #
###
→˓##################
fields:
- STATUS:

- TEMP_READY: { mask: 0x01, desc: indicates that a temperature reading is ready }
- HUM_READY: { mask: 0x02, desc: indicates that a humidity reading is ready }

- CTRL1:
- PD: {mask: 0x80, desc: power down mode}
- BDU: {mask: 0x04, desc: Block Data update. Prevents update until LSB of data is␣

→˓read}
- ODR:

mask: 0x03
desc: Selects the Output rate for the sensor data
vals:
- ONESHOT: { val: 0, desc: readings must be requested}
- 1HZ: { val: 1, desc: 1 hz sampling}
- 7HZ: { val: 2, desc: 7 hz sampling}
- 12_5HZ: { val: 3, desc: 12.5 hz sampling}

- CTRL2:
- BOOT: {mask: 0x80, desc: Reboot memory content}
- HEATER: {mask: 0x02, desc: Enable intenal heating element}
- ONESHOT: {mask: 0x01, desc: Start conversion for new data}

- TEMP_OUT:
- TEMP_OUT: {mask: 0xFFFF, desc: Current ADC reading for temperature sensor}

- HUMIDITY_OUT:
- HUM_OUT: {mask: 0xFFFF, desc: Current ADC reading for humidity sensor}

(continues on next page)

3.2. mrt-device 21

MrT

(continued from previous page)

###
→˓##################
Preset Configs ␣
→˓ #
###
→˓##################
configs:
- auto_1hz:

desc: Sets device to update every second
registers:

- CTRL2: {BOOT: 1, delay: 20} #20 ms delay after register write
- CTRL1: { ODR: 1HZ, BDU: 1}

The descriptor file contains device information such as part numbers, links to datashees, and other relevant information.
It also contains definitions of registers and data structures on the device. The main sections are Header Properties ,
Registers , and Fields

Header Properties

The header of the descriptor file contains several Properties. name and description are required, but others should
also be included if they apply

name
Name of device

description
Description of device

datasheet
url to public datasheet

mfr
Name of manufacturer

mfr_pn
Manufacturer part number

digikey_pn
Digikey part number

prefix
prefix to append to struct and function names to prevent conflicts in projects

bus
bus type for driver, can be I2C, SPI, UART, or any combination of those (comma separated)

i2c_addr
I2C address for device. For devices with configurable address, set this to the base address. It can be
changed in the driver

22 Chapter 3. mrtutils

MrT

Registers

registers are individualy addressable memory registers on the device. each register can have the folowing attributes:

• addr: register address on device

• type: register type, (default is uin8_t)

• perm: premissions on register R for read, W for write

• desc: description of register. used for code documentation

• default: default value of the register

Fields

fields are data fields contained in registers. They are grouped by register and they contain the following attributes:

• mask : this specifies the mask for the field. This is used to mask and shift data to match the field.

• vals : this is a list of possible values and their descriptions for the field.

Note: If a field is defined with a single bit mask, and no values, it is interpretted as a ‘flag’. Flag fields have macros
generated for setting, clearing, and checking them.

Configs

Configs allow the user to define preset configs for common use cases. This will create a macro for setting up the
registers

/**
* @brief Sets device to update every second
* @param dev ptr to HTS221 device
*/
#define HTS_LOAD_CONFIG_AUTO_1HZ(dev) \
hts_write_reg((dev), &(dev)->mCtrl2, 0x80); /* BOOT: 1 */ \
MRT_DELAY_MS(20); /* Delay for CTRL2 */ \
hts_write_reg((dev), &(dev)->mCtrl1, 0x05); /* ODR: 1HZ , BDU: 1 */ \

3.2.2 Step 2: generate the code

To generate the code, use mrt-device and specify an input and an output path:

mrt-device -i device.yaml -o .

The tool will generate 3 files (using hts221 as an example):

• hts221.h : header file for driver

• hts221.c : Source file for driver

• hts221_dev.h : Macros generated from device file. this contains macros for addresses, values, masks, and
functions for accessing fields/flags in registers.

3.2. mrt-device 23

https://gitlab.com/uprev/public/mrt/modules/Devices/Sensors/HTS221

MrT

3.2.3 Step 3: customize

This will provide a good base with access to all of the register. To add more functionality you can add to the code. If
you want to ability to modify the device file further, keep your code inside of the ‘user code’ blocks provided:

/*user-block-init-start*/
/*user-block-init-end*/

If the device does not follow the normal register access schemes, you can specify your own, and redirect the
mrt_regdev_t fRead and fWrite function pointers to them.

/**
*@brief writes buffer to address of device
*@param dev ptr to generic register device
*@param addr address in memory to write
*@param data ptr to data to be written
*param len length of data to write
*@return status (type defined by platform)
*/

mrt_status_t my_write_function(mrt_regdev_t* dev, uint32_t addr, uint8_t* data,int len)
{

//Do Something
}

static mrt_status_t hts_init(hts221_t* dev)
{

/*user-block-init-start*/
dev->mRegDev.fWrite = my_write_function;
/*user-block-init-end*/
return MRT_STATUS_OK;

}

3.3 mrt-ble

mrt-ble is a tool for creating gatt profile to use on BLE projects. It uses a yaml descriptor file to create C code and
documentation for the Gatt profile. The generated Documentation includes a Live ICD which is a single page web
app that can connect to the ble device and interact with the GATT Server.

mrt-ble is a tool in mrtutils, so if that is not already installed, install it first:

pip install mrtutils

To get started, you can create a template:

mrt-ble -t my_profile

this will create a decriptor file my_profile.yml with an example profile filled out

24 Chapter 3. mrtutils

MrT

3.3.1 Step 1: Define the profile

The Generated example descriptor file has comments to explaind the various fields. The overall structure is that
each descriptor file creates a Profile. A Profile is a group of Services, and a Service is a group of related
Characteristics

Header Properties

The beggining of the document contains properties for the profile .

name
Name of Profile

description
Description of Profile

prefix
short prefix to append to profile structs and functions to avoid conflicts in code

Services

Services can be custom, or imported from Bluetooth SIG standards using a URI. When importing from a SIG standard,
all MandatoryCharacteristics are automatically added, but optional ones must be specified. See the Device Service
and Battery Service in the Example file for an example of this.

Every service must have a prefix. And all custom services must have a UUID.

Optional properties:

icon
named icon from FontAwesome

3.3. mrt-ble 25

https://fontawesome.com/icons?d=gallery&m=free

MrT

Characteristics

Characteristics are individual fields in a Service. In a SIG standard Service you can use the SIG standard
Characteristics by specifying a URI.

Custom Characteristics must have a type. this can be any of the following

Type Description
uint8 Basic Unsigned Integer

Typesuint16
uint32
uint64
uint
char
int8 Basic Signed Integer

Typesint16
int32
int64
int
float decimal types
double
string array of chars
Enum uint8 with named values. Each value gets a symbol in

code
flags Bitmask with a defined symbol in code for each bit.

(maximum of 32 bits in a Characteristic)mask
Array specified with <type>*<size> ex: uint16*32 is an array

of 32 uint16 values

Other properties in a Characteristic include:

Example File

name: sample
author: Jason Berger
created: 02/20/2020
desc: GATT profile example
prefix: tp

services: #list multiple services in file to create full profile

##
Device Service
#
Shows example of using Bluetoot SIG define Services
##
- Device:

uri: org.bluetooth.service.device_information #User URI of bluetooth sig standard␣
→˓service. For a list of all standard services visit https://www.bluetooth.com/
→˓specifications/gatt/services

(continues on next page)

26 Chapter 3. mrtutils

MrT

(continued from previous page)

prefix: dvc
chars: #list out uris of 'optional' desired chars for bluetooth SIG services

- {uri: org.bluetooth.characteristic.manufacturer_name_string , default: Up-Rev}
→˓#Set a default value

- {uri: org.bluetooth.characteristic.serial_number_string}
- {uri: org.bluetooth.characteristic.hardware_revision_string}
- {uri: org.bluetooth.characteristic.firmware_revision_string, desc: Firmware␣

→˓revision} #You can override defaults from Bluetooth SIG (name,desc, perm, etc..)

##
Battery Service
#
Shows example of inline declaration for standard serivce
##
- Battery: {uri: org.bluetooth.service.battery_service}

#if a prefix isnt specified it will create one using the first 3 characters of the␣
→˓name.
#no need to list chars, because there is only one for the battery service and it is␣

→˓mandatory per the SIG spec

##
Sprinkler Servive
#
Show example of creating a custom service to control an
Automated sprinler system
#
- Controls 6 valves and pump for sprinklers
- Temperature sensor
- 6 soil moisture sensors
##
- Sprinkler:

prefix: spr
desc: Custom service for a sprinkler system
uuid: 71a8-1b49-ce39-0088-6b62-c8ed-9e20-9a5b
icon: fa-faucet # This adds an icon to the Live ICD for the service using Font-

→˓Awesome. Visit their site to view options: https://fontawesome.com/icons?d=gallery&
→˓m=free
chars:

- Thresh: { type: uint16, perm: RW , desc: Moisture Threshold to turn on the␣
→˓sprinklers} #if char uuid is blank, it will increment from previous char, or service␣
→˓uuid if it is the first in the service

- Temperature: { type: uint16, perm: RN , desc: Temperature reading from sensor,␣
→˓unit: °f, coef: 0.01} #unit and coef have no affect on data, just how ther are␣
→˓displayed in the live ICD

- Moisture: {type: uint16*6, desc: Moisture readings from all 6 zones, unit: "%"␣
→˓} # Create an array of 6 uint16_t values.

- Relays:
type: flags #flags create an array of bits which are individualy controlled

(continues on next page)

3.3. mrt-ble 27

MrT

(continued from previous page)

perm: RWN #Read Write and Notify permissions
desc: Controls Relays for pump and valves
vals:
- pump: {desc: pump control}
- valve01: valve 1 control #For convenience values can be written in this␣

→˓shorthand. same as '- valve01: {desc: valve 1 control}'
- valve02: valve 2 control
- valve03: valve 3 control
- valve04: valve 4 control
- valve05: valve 5 control
- valve06: valve 6 control

- SoilType:
type: enum #enums are treated as an unsigned int, but they have symbols␣

→˓defined and a switch case generated in the write handler
perm: RW
desc: Soil type for the yard
vals:
- Peat: Peat soil
- Sand: Peat soil
- Clay: Peat soil
- TopSoil

##
Firmware OTA Service
##
- FOTA:

desc: sercive for performing over the air updates
uuid: 71a8-1b49-ce39-0088-6b62-c8ed-9A10-9a5b
prefix: ota
chars:

- version: { type: string, perm: RW, desc: current Firmware version} #␣
→˓uuid: 0x9A11

- newVerion: {type: string, perm: RW, desc: version of new firmware being␣
→˓loaded}

- data: {type: uint8*64, perm: RW, desc: current block of data}
- seq: {type: uint32, perm: RW, desc: sequence number of current block␣

→˓ }
- crc: {type: uint32, perm: RW, desc: crc of new firmware }
- status:

type: enum
perm: RW
desc: status of OTA process
vals:
- IDLE: { desc: no ota operation taking place}
- DOWNLOAD: { desc: Currently downloading new firmware}
- COMPLETE: { desc: Firmware download complete. ready to update}

28 Chapter 3. mrtutils

MrT

3.3.2 Step 2: Generate Code

Once you have the profile defined, you can generate the code with

mrt-ble -i <yaml file> -o <output/path> -d <doc/path>

Note: regenerating the source code will not overwrite any code in the handler functions for the profile or services.

This will generate the following structure with source/header files:

outputDir
svc

dev_svc.h
dev_svc.c
ss_svc.h
ss_svc.c
bat_svc.h
bat_svc.c
ota_svc.h
ota_svc.c

app_dev_svc.c
app_ss_svc.c
app_bat_svc.c
app_ota_svc.c
sample_profile.c/h

3.3.3 Step 3: Integrating Code

The files in the svc folder are the low level descriptors and weakly defined handler functions. In most cases, there is
no need to modify these files.

The app_xx_svc.c files are for application level logic and contain the actual handler functions. This is where you
will put in your logic for handling events for each characteristic.

Each service will have an event handler for each Characteristic and a post_init handler. The post_init handler
is called after the GATT server is initialized. This is where default values will be set.

The Characteristic event handlers handle all events for a given Characteristic. The mrt_gatt_evt_t struct
contains the type of event [READ, WRITE,NOTIFY], as well as the raw data, and data size for the event.

example handlers from app_dev_svc.c:

/* Post Init ---*/

/**
* @brief Called after GATT Server is intialized
*/
void dev_svc_post_init_handler(void)
{

dvc_set_manufacturer_name("Up-Rev");
(continues on next page)

3.3. mrt-ble 29

MrT

(continued from previous page)

dvc_set_firmware_revision("0.1.9");
dvc_set_serial_number("001");

}

/* Characteristic Event Handlers--*/

/**
* @brief Handles GATT event on Manufacturer_Name Characteristic
* @param event - ptr to mrt_gatt_evt_t event with data and event type
*/
mrt_status_t dev_manufacturer_name_handler(mrt_gatt_evt_t* event)
{

if(event->mType == GATT_EVT_VALUE_WRITE)
{

char* val = ((char*) event->mData.data); /* Cast to correct data type*/
MRT_PRINTF("Device name set to %s", val);

}

return MRT_STATUS_OK;
}

Note: For more information on the mrt_gatt_evt_t struct, read the docs for the gatt-server module

The source code and header for sample_profile.c contain the initialization funtion which will initialize all of the
services. This function is called by the platform once the GATT server is up. This will vary from platform to platform
so check the Platform documentation for how to implement this. But the most common method is to register the init
function, before starting any bluetooth services.

MRT_GATT_REGISTER_PROFILE_INIT(sample_profile_init);

Once the function is registered, it is up to the Platform layer to call the function at the appropriate time.

3.3.4 Live ICD

Once your GATT profile is running on the target device, it is useful to be able to interact with it for testing and develop-
ment. When the code is generated with documentation it produces 2 files. The first is a plain text ICD for documentation,
and the second is a Live ICD. This is a single page web app which can connect to the device over BLE and provide a
GUI for interacting with the device.

30 Chapter 3. mrtutils

https://bitbucket.org/uprev/device-gatt-server/src/master/

MrT

3.4 mrt-version

mrt-version is a tool for managing the version information in a project. It keeps the version information in a header
file, and provides a convenient way to update it and use the version with continuous integration tools.

3.4.1 Creating the header file

mrt-version main/version.h

This will create the header file, with the initial version set to 0.0.0.0

Note: ‘yml’, ‘env’, ‘json’, and ‘h’ files are supported

/**
* @file version.h
* @author generated by mrt-version (https://mrt.readthedocs.io/en/latest/pages/mrtutils/
→˓mrt-version.html)
* @brief version header
* @date 05/01/21
*/

#define VERSION_MAJOR 0
#define VERSION_MINOR 0
#define VERSION_PATCH 0
#define VERSION_BUILD 0
#define VERSION_BRANCH "master"
#define VERSION_COMMIT "c4526b4ec43b9a74c572bfbb6059b65bce4b0029"

#define VERSION_STRING "0.0.0.0"

Note: To include repo information, call the tool from the root of the projects repo. when the branch is not ‘master’
an ‘*’ will be added to the end of VERSION_STRING. This makes it clear to the user/tester that they are not using an

3.4. mrt-version 31

MrT

official build

3.4.2 Supported File Types

mrt-version can be used with several file types for different types of projects. The file type is automatically detected
from the extension of the filename.

mrt-version version.env # environment variable file
mrt-version version.h # C header file
mrt-version version.json # JSON file
mrt-version version.yml # YAML file

3.4.3 Updating the Version

After the initial file is created, you can set specific parts with the command line arguments (–major,–minor,–patch,
–build). These values can be set to a value or incremented by a value. Minor and Patch can also be set to auto. auto
will count the number of commits since the parent portion was last updated. i.e. If Patch is set to auto it will count
the number of commits on the master branch since Minor was last updated, and use that count as the new value for
Patch

mrt-version main/version.h --patch +1 --build 44

#define VERSION_MAJOR 0
#define VERSION_MINOR 0
#define VERSION_PATCH 1
#define VERSION_BUILD 44
#define VERSION_BRANCH "master"
#define VERSION_COMMIT "c4526b4ec43b9a74c572bfbb6059b65bce4b0029"

#define VERSION_STRING "0.0.1.44"

Note: Incrementing Minor will reset Patch to 0, and incrementing Major will reset Minor and Patch to 0.

Auto

Minor and Patch can also be set to auto. auto will count the number of commits since the parent portion was last
updated. i.e. If Patch is set to auto it will count the number of commits on the master branch since Minor was last
updated, and use that count as the new value for Patch

example:

32 Chapter 3. mrtutils

MrT

mrt-version inc/version.h --patch auto

This would change the version to v0.1.4 since there have been 4 commits to the master branch since the Minor was
incremented at the v0.1.0 tag

3.4.4 Build System/Webhook integration

The tool will always output the version string so it can be easily used for other things such as git tags and documentation.

In this example patch is incremented by 1, and then the commit is tagged in the repo with the output (i.e. ‘v2.1.3’)

VERSION_STR=$(mrt-version main/version.h --patch +1)
git tag -a $VERSION_STR -m "Adding Version Tag"

By default the output format is Majon.Minor.Patch, but it can be customized with the –format flag. It uses simple string
substition and the available variables are $MAJOR, $MINOR, $PATCH, $BUILD , $BRANCH, and $HASH.

3.4.5 Future Improvements

The next step will be to have this tool generate and update changelog as the version is updated.

3.5 mrt-doc

mrt-doc is a tool used for documentation in projects. It gathers all of the mrt.yml files from the modules and creates
a master mrt.yml in the root MrT directory. It can also be used to combine all of the documentationusing the -d flag.

mrt-doc -d doc/moddocs

This will create the directory doc/moddocs and populate it with a folder structure that matches the structure of the
modules, along with any README files. Each directory in the structure will contain an index.rst containing a
toctree for that folder.

3.5. mrt-doc 33

MrT

Note: Currently supported file types are `reStructuredText`_ and `Markdown`_

Example project contain some MrT modules:

doc
moddocs

Devices
RegDevice

README.rst
Sensors

HTS221
README.rst

index.rst
index.rst

Platforms
Atmel

README.md
Common

README.md
index.rst

Utilities
COBS

README.md
JSON

README.md
PolyPacket

doc
logo.png

README.rst
index.rst

index.rst

Note: If you would like to include additional files (documents, pictures, etc) in a submodules documentation, add
them to a doc folder in the submodule. This folder will also be copied into the structure.

3.6 mrt-gen

3.6.1 Code Templates

mrt-gen is a tool used to create common project components. By default it creates plain .h/.c files

mrt-gen src/test

This creates src/test.h and src/test.c. Adding ‘-t cpp’ will create src/test.h and src/test.cpp

34 Chapter 3. mrtutils

MrT

3.6.2 Creating Sphinx documentation

If a --type is not specified, and the path ends with docs, it will create a docs folder with a sphinx template.

mrt-gen ./docs

docs
Makefile
assets

diagrams
samplediagram.dio.png

conf.py
index.rst
pages

samplepage.rst

This can be used to generate an html or pdf version of the documentation

cd docs
make latexpdf
make html

3.6.3 MrT Module Template

using the -m flag will create an MrT submodule with the required items.

mrt-gen -m mymodule

mymodule
README.rst
mrt.yml
mymodule.c
mymodule.h
mymodule_UT.cpp

3.7 Tools

mrt-config
Manages MrT modules in a project.

mrt-device
Generates device drivers for register based devices

mrt-ble
Creates custom Bluetooth Low Energy GATT profiles along with C code, documentation, and a single page web
client for the GATT server using Web Bluetooth API.

mrt-version
Used to manage version information of a project

mrt-doc
Generates project documentation

3.7. Tools 35

MrT

mrt-gen
Generates MrT module template

36 Chapter 3. mrtutils

CHAPTER

FOUR

POLYPACKET

Poly Packet is a set of tools aimed at generating serial communication protocols from embedded projects. Protocols
are described in an YAML document which can be easily shared with all components of a system.

A python script is used to parse the YAML file and generate C/C++ code as well as documentation. The code generation
tool can create the back end service, application layer, and even an entire linux utility app

4.1 Installation

while PolyPacket is its own package separate from mrtutils, it is automatically installed when mrtutils is in-
stalled. But if you want to install it separately you can:

37

MrT

pip install polypacket

4.2 Step 1: Defining a Protocol

Protocols are defined with a YAML file. To get started you can generate a sample template:

poly-make -t my_protocol

This will generate my_protocol.yml

4.2.1 Descriptor File

Protocols are generated using YAML. The messaging structure is made up 4 entity types:

• Fields

• Packets

• Vals

• Structs

4.2.2 Fields

A field is a data object within a packet. These can be expressed either as nested yaml, or an inline dictionary

Example fields:

fields:
- sensorA: { type: int16 ,desc: Value of Sensor A}
- sensorB:

type: int
format: hex
desc: Value of Sensor B

- sensorsC_Z:
type: int*24
desc: Values for remaining 24 sensors

type
The data type for the field. *n indicates it is an array with a max size of n

format
(optional) This sets the display format used for the toString and toJsonString methods [hex , dec ,
assci]

desc
(optional) The description of the field. This is used to create the documentation

Supported types:

38 Chapter 4. PolyPacket

MrT

Type Description
uint8 Basic Unsigned Integer

Typesuint16
uint32
uint64
uint
char
int8 Basic Signed Integer

Typesint16
int32
int64
int
float decimal types
double
string array of chars
Enum uint8 with named values. Each value gets a symbol in

code
flags Bitmask with a defined symbol in code for each bit.

(maximum of 32 bits in a Characteristic)mask
Array specified with <type>*<size> ex: uint16*32 is an array

of 64 uint16 values

Fields can be nested into ‘Field Groups’ for convenience

fields:
- header:

- src: {type: uint16, desc: Address of node sending message }
- dst: {type: uint16, desc: Address of node to receive message }

Note: these will be added to the packet as regular fields. The grouping is just for convenience

4.2.3 Packets

A Packet describes an entire message and is made up of fields

example Packet:

packets:
- Data:

desc: contains data from a sensor
fields:

- header
- sensorA
- sensorB
- sensorName

name
The name of the packet

desc
(optional) description of the packet for documentation

4.2. Step 1: Defining a Protocol 39

MrT

response
(optional) name of the packet type expected in response to this message (if any)

within the packet we reference Fields which have already been declared in the Fields section. these references contain
3 attributes:

name
The name of the field

req
(optional) makes the field a requirement for this packet type

desc
(optional) description of this field for this packet type, will override fields description in the docu-
mentation for this packet type only

4.2.4 Val

Val entities are used for defining options in enum and flags fields.

fields:
- cmd:

type: enum
format: hex
desc: command byte for controlling node
vals:

- led_ON: { desc: turns on led}
- led_OFF: { desc: turns off led}
- reset: { desc: resets device }

In this example an enum is used to set up some predefined options for the cmd field. enums are created with sequential
values starting at 0. a flags field is defined in the same way, but instead of sequential numbers, it shifts bits to the left,
to create a group of individually set-able flags.

4.2.5 Struct

Structs are meant to store a model of an object locally. at the low level structs are essentially the same thing as packets
in that they are a collection of fields. The only real difference is the name, and how they are documented.

>The purpose of structs is they make it easy to manage remote object(s). poly_packet_copy(dst,src) copies all mutual
fields from src to dst, so using a single line in the handlers for the get/set packets gives us a remotely configurable node

structs:

- Node:
desc: struct for modeling node
field:

- sensorA
- sensorB
- sensorName

Example of Struct usage:

40 Chapter 4. PolyPacket

MrT

sp_struct_t thisNode; //must be initialized with sp_struct_build(&thisNode, SP_STRUCT_
→˓NODE);

HandlerStatus_e sp_Data_handler(sp_packet_t* sp_data)
{

sp_packet_copy(&thisNode, sp_data); //update thisNode from incoming data packet

return PACKET_HANDLED;
}

HandlerStatus_e sp_GetData_handler(sp_packet_t* sp_getData, sp_packet_t* sp_data)
{

sp_packet_copy(sp_data, &thisNode); //update data packet with fields from thisNode

return PACKET_HANDLED;
}

4.2.6 Example Protocol

Here is an example file. This is the starting point when you generate a template:

name: sample
prefix: sp #this defines the prefix used for functions and types in the code. This␣
→˓allows multiple protocols to be used in a project
desc: This is a sample protocol made up to demonstrate features of the PolyPacket
code generation tool. The idea is to have a tool that can automatically create parseable/
→˓serializable
messaging for embedded systems

###
→˓##################
FIELDS ␣
→˓ #
###
→˓##################

fields:

#Fields can be nested into a 'Field Group' for convenience. They will be put in the␣
→˓packet just like regular fields
- header:

- src: {type: uint16, desc: Address of node sending message }
- dst: {type: uint16, desc: Address of node to receive message }

- sensorA: { type: int16 ,desc: Value of Sensor A} #Simple Fields can be defined as␣
→˓inline dictionares to save space

- sensorB:
(continues on next page)

4.2. Step 1: Defining a Protocol 41

MrT

(continued from previous page)

type: int
desc: Value of Sensor B

- sensorName:
type: string
desc: Name of sensor

- cmd:
type: enum
format: hex
desc: command byte for controlling node
vals:

- led_ON: { desc: turns on led}
- led_OFF: { desc: turns off led}
- reset: { desc: resets device }

###
→˓##################
Packets ␣
→˓ #
###
→˓##################
packets:
- SendCmd:

desc: Message to send command to node
fields:

- header
- cmd

- GetData:
desc: Message tp get data from node
response: Data #A response packet can be specified
fields:

- header

- Data:
desc: contains data from a sensor
fields:

- header
- sensorA
- sensorB
- sensorName : {desc: Name of sensor sending data } #Field descriptions can be␣

→˓overriden for different packets
###
→˓##################
Structs ␣
→˓ #
###
→˓##################

structs:
(continues on next page)

42 Chapter 4. PolyPacket

MrT

(continued from previous page)

- Node:
desc: struct for modeling node
fields:

- sensorA
- sensorB
- sensorName

4.2.7 Agents

Agents allow the CLI to be extended to simulate behavior and use custom commands. They do not affect the way code
is generated, they are only used when running the CLI tool.

• Display custom/calculated information based on packet data

• route packets to other interfaces

• simulate values or responses for testing

• create full a test utility which verifies data in the packets

###
→˓##################
Agents ␣
→˓ #
###
→˓##################
agents:

This creates an agent named 'node' to load it, add '-s node' when running poly packet
naming an agent 'default' will cause it to load automatically when the CLI is␣

→˓started
- node:

init signature is init(service):
There is a global dicst named DataStore that can be used to store variables
init: |

DataStore['node'] = service.newStruct('Node')
DataStore['node'].setField('sensorName', 'node01')
DataStore['node'].setField('sensorA', 25)
DataStore['node'].setField('sensorB', 65)
node = DataStore['node']
service.print('\nCreating Sensor node:\n name: {0}\n sensorA: {1}\n ␣

→˓sensorB: {2}\n'.format(node.getField('sensorName'),node.getField('sensorA'),node.
→˓getField('sensorB')))

def myFunc():
service.print('myFunc called')

#handlers fill out a function with the signature <name>_handler(service, req,␣
→˓resp):

you can print out to the console with service.print(text)
handlers:

(continues on next page)

4.2. Step 1: Defining a Protocol 43

MrT

(continued from previous page)

#Use packets/nodes can be copied to eachother. All shared fields that are␣
→˓present in the source will get copied to the destination

- SetData: |
req.copyTo(DataStore['node'])

- GetData: |
DataStore['node'].copyTo(resp)

#You can add custom commands to an agent that will be loaded in for autocomplete␣
→˓and help menus in the CLI

commands:
- rename:

desc: renames the node
args:

- name: {desc: new name for node, default: new_name}
handler: |
DataStore['node'].setField('sensorName', name)
service.print('\nRenaming Sensor node:\n name: {0}\n'.format(name))

Note: Agents can be loaded by adding the ‘-a <agent_name>’ flag when running the CLI, or using the loadAgent
command in the CLI. If an agent named ‘default’ is present, it will be loaded automatically when the CLI is started.

Each agent has 3 sections:

init:
This is run when the agent is loaded. It is used to initialize the agent and set up any variables that will be used in the
handlers. This block of code is executed in the global scope, so functions defined here will be available to the handlers.
This section can also be used to import modules that will be used in the handlers.

handlers:
This is a list of packet handlers. The name of the handler must match the name of the packet it handles.

The signature of the handler is: <name>_handler(service, req, resp)

• service - The poly packet service. This is used to access the packet data and send packets

• req - The incoming request packet

• resp - the outgoing response packet

commands:
This is a list of custom commands that can be run from the CLI. The name of the command is the name of the command
that will be run from the CLI.The handler is a python script that will be run when the command is called.

The signature of the command handler is: <name>_cmd_handler(service, args)

• service - The poly packet service. This is used to access the packet data and send packets

• args - A dictionary of the arguments passed to the command. The keys are the names of the arguments and the
values are the values passed in. * If no value is passed in, the default value will be used. If no default value is
specified, the argument will be None * args are defined in the handler, so you can use them by name without
needing to use args[‘name’]

44 Chapter 4. PolyPacket

MrT

4.2.8 Plugins:

Protocol files can include other protocol files. This allows you to create a library of common packets and structs that
can be used across multiple protocols. To inlude a protocol file, use the Plugins directive.

plugins:
- https://gitlab.com/uprev/public/mrt/Modules/Utilities/OTA/poly/ota-protocol.yml:

→˓{prefix: ota}
- /path/to/protocol2.yml

• Plugin paths can be local or a url.

• The prefix is used to prefix all packets and fields in the plugin. This can be used to avoid name collisions between
plugins and the base protocol

4.3 Step 2: Generating the Code

poly-make is the tool that will turn the yaml description into c code for projects.

poly-make -i my_protocol.yml -o . - a

-i
sets the input file

-o
tells it where to create the C files for the service

-a
tells the tool to create the application layer (this is not required, but is a helpful starting point)

4.4 Step 3a: Using The Code C/C++

The C code generated for the service in step 2 relies on the MrT module /Utilities/PolyPacket.

4.4.1 Initializing service

To initialize a service call the service_init function.

Note: all service functions are prepended with the service prefix to allow multiple services to co-exist

sp_service_init(1, 8); //initialize the service with 1 interface, and a spool size of 8

This example initalizes the service with 1 interface. An interface is an abstract port into and out of the service. If
your device needs to use the protocol on multiple hardware ports (Uart, TCP/IP, SPI, etc..) each one of these would
have its own interface.

The Spool size just determines how much memory the message spool (per interface) uses. With a size of 8, we can
have 8 messages on the outgoing spool for each interface at a time. This really only comes into play when we are using
auto-retries since packets stay on the spool until they are acknowledged or exceed the max-retry count.

4.3. Step 2: Generating the Code 45

MrT

4.4.2 Register Tx functions

For each interface we need to register a send function. This allows the service to handle the actual sending so we can
automate things like acknowledgements and retries. There are two types of send callbacks that can be registered:

typedef HandlerStatus_e (*poly_tx_byte_callback)(uint8_t* data , int len);
typedef HandlerStatus_e (*poly_tx_packet_callback)(poly_packet_t* packet);

The poly_tx_byte_callback will pass the packet as an array of COBS encoded bytes which can be sent directly
over a serial connection.

The poly_tx_packet_callback will pass a reference to the packet itself which can be converted to JSON, or ma-
nipulated before sending.

sp_service_register_tx_bytes(0, &uart_send); // register sending function for raw bytes␣
→˓on interface 0

sp_service_register_tx_packet(0, &json_send); // register sending function for entire␣
→˓packet on interface 0

once we have registered a callback for an interface, we can send messages to it using the quick send functions generated
for the service.

sp_sendGetData(0); // Sends a 'GetData' packet over interface 0

4.4.3 Feed the service

The underlying service is responsible for packing and parsing the data. So wherever you read bytes off of the hardware
interface, just feed them to the service.

void uart_rx_handler(uint8_t* data, int len)
{

sp_service_feed(0, data, len); //feed the bytes to interface 0
}

From here the service will take care of parsing the data and dispatching messages to the proper message handler.

4.4.4 Sending messages

The service creates one-liner functions for easily sending simple messages

Using the example protocol we can send a message to get data from a remote device on interface 0 with:

sp_sendGetData(0); //send a 'GetData' packet over interface 0

for packet types with data fields, the datafields get turned into the arguments for the function

Note: Only ‘required’ fields can be used as arguments

sp_sendData(0, 97, 98, "My Sensor name"); //send a 'Data' packet over interface 0

Occasionally you may need to send a packet , but do not want to use the quick-send functions. an example of this would
be sending a packet that includes optional fields. This can be done by using the <prefix>_packet_build function:

46 Chapter 4. PolyPacket

https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing

MrT

sp_packet_t msg;
sp_packet_build(&msg,SP_DATA_PACKET);

next we set fields in the message

sp_setSensorA(msg,97);
sp_setSensorName(msg,"my sensor");

sp_send(0,&msg);

Important: If you build a package, but do not send it, be sure to clean it! The safest practice is to just always clean it.
There is no harm in cleaning a packet that has been sent.

sp_clean(&msg);

4.4.5 Receive Handlers

The generated service creates a handler for each packet type, they are created with weak attributes, so they can be
overridden by just declaring them again in our code. If you specify a response for a packet in the YAML, the service
will initialize that packet and pass a reference to the handler.

The handler can return the following statuses:

PACKET_HANDLED
service will respond with the response packet (or an ack if none is specified)

PACKET_UNHANDLED
packet will drop through to the Default_handler

PACKET_IGNORED
packet will be ignored and skip the default handler

The following is our handler for ‘SetData’ type packets

/**
*@brief Handler for receiving GetData packets
*@param GetData incoming GetData packet
*@param Data Data packet to respond with
*@return handling status
*/

HandlerStatus_e sp_GetData_handler(sp_packet_t* sp_GetData, sp_packet_t* sp_Data)
{

//set the fields of the responese packet
sp_setSensorA(sp_Data, 97);
sp_setSensorB(sp_Data, 98);
sp_setSensorName(sp_Data, "My sensor");

return PACKET_HANDLED; //respond with response packet
}

4.4. Step 3a: Using The Code C/C++ 47

MrT

4.4.6 Process

The service is meant to be run on many platforms, so it does not have built in threading/tasking. For it to continue
handling messages, we have to call its process function either in a thread/task or in our super-loop

while(1)
{
sp_service_process();
}

4.5 Step 3b: Using The Code JSON

If you are working with json you can register a poly_tx_packet_callback and convert your packets to json strings for
sending.

HandlerStatus_e json_send(poly_packet_t* packet)
{

char buf[256];
int len;

len = sp_print_json(packet, buf); //print json string to buffer
some_tcp_function(buf, len); //send json string out

return PACKET_SENT;
}

after you initialize the service, register the callback:

sp_service_register_tx_packet(0, &json_send); // register sending function for entire␣
→˓packet on interface 0

Now when messages are sent out on interface 0, they will be converted to json strings and sent out with
some_tcp_function.

4.5.1 Handling JSON packets

For handling incoming json packets, there are two options. you can feed the json message to the service for normal
handling or call the json handler to bypass the normal service queue. This option makes it easy to use the service in
synchronous tasks such as responding to an http request

4.5.2 Async JSON

void app_json_async_handler(char* strJson, int len)
{

sp_service_feed_json(0,strJson, len);
}

48 Chapter 4. PolyPacket

MrT

4.5.3 Sync JSON

void app_json_sync_handler(const char* strRequest, int len, char* strResp)
{

HandlerStatus_e status;
status = sp_handle_json(strRequest, len, strResp);

}

4.6 PolyPacket CLI Tool

Once you have a descriptor file, you can run a live interface of the protocol using poly-packet

Open two terminals and connect them over udp to test it out:

terminal 1:

poly-packet -i sample_protocol.yml -c udp:8020

terminal 2:

poly-packet -i sample_protocol.yml -c udp:8010:8020

Note: The tool can connect over tcp, udp, and serial

The terminal interface uses autocompletion, so hit tab to show available packet/ field types. To send a packet just type
the packet name followed by comma seperated field names and values.

example: .. code-block:: bash

Data sensorA: 45, sensorB: 78, sensorName: mySensor

The instance of the service running on port 8020 will respond to the packet with an ‘ack’

4.6. PolyPacket CLI Tool 49

MrT

50 Chapter 4. PolyPacket

CHAPTER

FIVE

MODULES

This section contains the documentation for the individual modules. They are all pulled from the modules during
build/tests of the main MrT repo.

5.1 Platforms

5.1.1 Platform-NRF5

To use the NRF5 Abstraction layer, create a repo with an NRF5 project.

Use the mrt-config tool to add in submodules. Make sure to import the Platforms/Common and Platforms/NRF5
modules

Setting the Platform

To set the project to use the NRF5 Abstraction module you need to create an MRT_PLATFORM symbol with a value
of MRT_NRF5. If using the nrf5 project template, this can be done by adding the following linke to Makefile:

5.1.2 Linux

Platform abstraction for linux

5.1.3 ESP32

Requires: Modules/Platforms/Common

Following the example projects to create a template, you should end up with a main directory containing a compo-
nent.mk file.

add the following lines to this coponent.mk, filling in the modules used. . .

CFLAGS+= -DMRT_PLATFORM=MRT_ESP32

COMPONENT_ADD_INCLUDEDIRS := Path/To/MrT/Modules Path/To/MrtModules/<module-1-path>␣
→˓Path/To/MrtModules/<module-2-path>

COMPONENT_SRCDIRS := Path/To/MrT/Modules Path/To/MrtModules/<module-1-path> Path/To/
→˓MrtModules/<module-2-path>

This is plannned to be improved so you dont have to list each module path

51

https://github.com/uprev-mrt/mrtutils

MrT

5.1.4 STM32

To use the stm32 Abstraction layer, create a repo with an STM32 project. The recommended tool is the STM32CubeIDE

Use the mrt-config tool to add in submodules. Make sure to import the Platforms/Common and Platforms/STM32
modules

Note: after importing modules, right click the project and hit refresh so it sees the new directories

To use the STM32 platform, cofigure the following settings:

• Project->Properties->C/C++ General->Path and Symbols:

– Under the Symbols tab add a symbol named MRT_PLATFORM with the value MRT_STM32_HAL
– Under the Source Location tab click add and select the Modules directory under Mr T

– Under the Includes tab, click add and add the path to the Modules directory under Mr T

Troubleshooting common problems

main.h no such file

• main.h no such file or directory
This issue is normally accompanied by a wrench icon on the MrT directory which indicates local direc-
tory settings overriding the workspace settins. To correct this, right click the folder and click Resource
configurations -> Reset to Defaults

Using ACI BLE

Important: deprecrated. Gatt Interface should now use the stm32_gatt_adapter

To use the STM32 ACI interface for BLE:

• Project->Properties->C/C++ General->Path and Symbols: * Under the Symbols tab add a symbol named
STM32_GATT_MODULE_ENABLED

Generate the services/profile using mrt-ble

The output will be a header/source for each service, and a header/source for the profile. In main.c, before ‘APPE_Init();’
register the profile init function:

MRT_GATT_REGISTER_PROFILE_INIT(example_profile_init);

When the server is initialized by the system it will create and register all services and characteristics. To update a value
use:

MRT_GATT_UPDATE_CHAR(&env_svc.mTemp, (uint8_t*)&temp, sizeof(temp)); /* replace env_svc.
→˓mTemp with a char in one of your services*/

52 Chapter 5. Modules

https://github.com/uprev-mrt/mrtutils
https://github.com/uprev-mrt/mrtutils

MrT

Enabling printf

The Stm32 programmers use the SWO pin to print messages back to the host. This can be useful to log out messages
to the console for debug. To enable printf to work through the SWO pin follow these steps:

1. add ‘-lc -lrdimon’ to linker flags

2. in the Debug configuration (little arrow by the bug icon) under ‘Start Up’ tab add “monitor arm semihosting
enable” to initialization commands

3. add the following code snippets:

top of main.c:

#include "stdio.h"

int __io_putchar(int ch)
{
ITM_SendChar(ch);
return(ch);

}

int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{

__io_putchar(*ptr++);
}
return len;

}

extern void initialise_monitor_handles(void);

inside main()

initialise_monitor_handles();

5.1.5 Atmel

Requires: Modules/Platforms/Common

To use with an atmel asf project, include the Mr T repo as a submodule of the project

(for more detailed instruction visit the README from the MrT/Config Repo)

Integrating to Atmel Studio
Once you have created your project and imported the Mr T modules needed, open the project in Atmel Studio and
follow these steps:

1. Click the ‘Show All files’ button in the solution explorer

2. right click mrt/Modules/mrt_platform, and select ‘Include in project’

3. go to the poject properties and add the symbol for your framework

5.1. Platforms 53

MrT

MRT_PLATFORM_ATMEL_ASF for atmel asf projects MRT_PLATFORM_ATMEL_START for
atmel-start projects

1. go to the poject properties and add ‘src/mrt/Modules’ as an include path

2. for each module you would like to use, right click the module directory in the solution explorer, and click ‘Include
in project’

5.1.6 Common

This module defines definitions and functions common to all platforms. It must be included with any project that uses
on the of the Platform abstractions.

FreeRTOS

To enable FreeRTOS add the symbol MRT_FREERTOS to the project or define it above the include statement for
mrt_platform.h. This will override the malloc and free functions, and map the MRT_MUTEX macros accordingly:

/**
*@file mrt_FreeRTOS.h
*@brief Abstraction header FreeRTOS
*@author Jason Berger
*@date 8/27/2020
*/

#pragma once

#include "cmsis_os.h"
#include "semphr.h"

#define malloc(size) pvPortMalloc(size)
#define free(ptr) vPortFree(ptr)

#define MRT_MUTEX_TYPE SemaphoreHandle_t
#define MRT_MUTEX_CREATE(m) (m) = xSemaphoreCreateMutex()
#define MRT_MUTEX_LOCK(m) xSemaphoreTake((m), portMAX_DELAY)
#define MRT_MUTEX_UNLOCK(m) xSemaphoreGive((m))
#define MRT_MUTEX_DELETE(m) vSemaphoreDelete((m))

5.2 Utilities

5.2.1 GFX

ColorGfx

Module for graphics buffering. The module is intended to handle graphics using multiple color modes
(mono,565,24bit). Once functional this will be able to replace the existing MonoGFX. One benefit to this ithe ability
to convert assets between color modes for displaying on any display. example: a color image could be displayed on a
mono chromatic display, or a tri-color which buffers as 3 separate monochramitic canvases.

54 Chapter 5. Modules

MrT

the gfx_t struct can be initialized ‘buffered’ or ‘unbuffered’. When it is buffered, it allocates its buffer in memory and
works with the local copy. When it is unbuffered, all drawing functions are sent to the callback function for writing
pixels. This allows the use of displays with areas too large to store in ram.

buffered example:

gfx_t gfx;

//initialize a 128x32 canvase
gfx_init_buffered(&gfx,128,32, GFX_COLOR_MODE_888);

//Set pen with stroke of 1 pixel and color red
gfx_set_pen(&gfx, 1, GFX_COLOR_RED);

//draw a 30x20 rectangle at x,y = 5,5 and fill it in
gfx_draw_rect(&gfx, 5,5,30,20, GFX_OPT_FILL);

5.2.2 Audio

utility-audio-test

Utility for various audio testing

utility-AudioXcoder

Transcoding utility for audio data

5.2.3 Interfaces

Gatt Interface

Backend C code for mrt-ble generated Gatt Profiles.

5.2.4 OTA

This module provides utility functions and structs for managing OTA (Over the Air) update images in memory.

Typical OTA Update processes can be broken down into several steps:

1. Staging the update image (Downloading the update image to a staging area in memory)

2. Applying the update (Moving the update from the staging area to program memory)

3. Rebooting the device to run the new firmware

5.2. Utilities 55

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-ble.html

MrT

OTA Image Manager

The ota_img_mgr_t struct provides a way to manage multiple OTA disks. This is useful if you have multiple storage
devices, such as an SD card and a SPI flash chip.

• ota_img_mgr_t - Collection of ota_dsk_t structs.

• ota_dsk_t - A disk is a storage device. This can be a SPI flash chip, EEPROM, embedded flash, SD card, etc.

• ota_partition_t - A partition is a section of a disk. A disk can be split up into multiple partitions. Each partition
contains a single image

• ota_img_t - An image is a file that contains the update data. This is usually a binary file.

Initializing Staging disk

#include "ota_img.h"
ota_img_mgr_t ota_mgr;

void spi_flash_write(uint32_t addr, uint8_t *data, uint32_t len)
{

//TODO write to flash
}

void spi_flash_read(uint32_t addr, uint8_t *data, uint32_t len)
{

//TODO read from flash
}

int main(void)
{

ota_img_mgr_init(&ota_mgr);

ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write,␣
→˓spi_flash_read);

//If there are no partitions, add them this is first boot, create partitions
if(stagingDsk->partitionCount == 0)
{

//If dsk has not been partitioned, add partitions
ota_dsk_add_partition(stagingDsk, 0, 56000, "firmware");
ota_dsk_add_partition(stagingDsk, 0, 56000, "fpga");

}

}

56 Chapter 5. Modules

MrT

Staging an OTA Update image

#include "ota_img.h"
ota_img_mgr_t ota_mgr;

ota_partition_t* firmware_partition = NULL;
ota_partition_t* fpga_partition = NULL;

..

void ota_firmware_block_callback(uint32_t offset, uint8_t *data, uint32_t len)
{

ota_partition_write_image(firmware_partition, offset, data, len)
}

int main(void)
{

ota_img_mgr_init(&ota_mgr);

ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write,␣
→˓spi_flash_read);

//If there are no partitions, add them this is first boot, create partitions
if(stagingDsk->partitionCount == 0)
{

//If dsk has not been partitioned, add partitions
ota_dsk_add_partition(stagingDsk, 0, 56000, "firmware");
ota_dsk_add_partition(stagingDsk, 0, 56000, "fpga");

}

firmware_partition = ota_dsk_get_partition(&stagingDsk, "firmware");

while(1)
{

//TODO Request next block from server
}

}

Applying the Update

This step would usually take place in the bootlaoder.

If the staging area is already in a location where it can be executed, then you can just jump to that location. If there
are multiple images for a ping-pong style update, then you can use the ota_dsk_get_active_partition function to get the
active partition. only one partition can be active at a time. Setting a partition as active will set the other partition(s) as
inactive.

#include "ota.h"
ota_img_mgr_t ota_mgr;

(continues on next page)

5.2. Utilities 57

MrT

(continued from previous page)

void stage_update() //This would be called during the staging process
{

ota_ctx_init_staging(&spiFlash, spi_flash_write, spi_flash_read);
ota_img_mgr_init(&ota_mgr);
ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write,␣

→˓spi_flash_read);

ota_partition_t* partA = ota_dsk_get_partition(stagingDsk, "firmwareA");
ota_partition_t* partB = ota_dsk_get_partition(stagingDsk, "firmwareB");

if(partA->flags && OTA_PARTITION_FLAG_ACTIVE)
{

//TODO Write new image to partB

ota_partition_set_active(partB);
}
else
{

//TODO Write new image to partA
ota_partition_set_active(partA);

}

}

int launch_application(void) //This would be called during the boot process
{

ota_img_mgr_init(&ota_mgr);
ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write,␣

→˓spi_flash_read);

//Get the active partition
ota_partition_t* active_part = ota_dsk_get_active_partition(stagingDsk); //This will␣

→˓return partA if it is active, or partB if it is active.
printf("Active partition is %s", active_part->label);
//Jump to active_part->image.addr

}

If the staging area is not an executable location, then you will need to copy the image to an executable location. This
can be done manually, or by giving the ota_dsk struct a read and write callback for the destination dsk and using the
ota_partition_apply_update function. This function will copy the image to the destination and then verify it with the
provided CRC32.

#include "ota.h"
#include "crc32.h"
ota_img_mgr_t ota_mgr;

ota_dsk_t* stagingDsk = NULL;
(continues on next page)

58 Chapter 5. Modules

MrT

(continued from previous page)

ota_dsk_t* nvsDsk = NULL;

#define BLOCK_SIZE 256
#define APPLICATION_ADDR 0x10000

mrt_status_t nvs_write(uint32_t addr, uint8_t *data, uint32_t len)
{

//TODO write to nvs
}

mrt_status_t nvs_read(uint32_t addr, uint8_t *data, uint32_t len)
{

//TODO read from nvs
}

int main(void)
{

mrt_status_t status = MRT_STATUS_OK;
ota_ctx_init(&ota, spi_flash_write, spi_flash_read, nvs_write, nvs_read);

ota_img_mgr_init(&ota_mgr);
stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_

→˓read);
nvsDsk = ota_img_mgr_add_dsk(&ota_mgr, "nvs", nvs_write, nvs_read);

ota_partition_t* firmware_staging_partition = ota_dsk_get_partition(stagingDsk,
→˓"firmware");

ota_partition_t* firmware_exec_partition = ota_dsk_get_partition(nvsDsk, "firmware");

//IF the firmware partition is not null and the new flag is set, then apply the␣
→˓update
if((firmware_staging_partition == NULL) && (firmware_partition->flags && OTA_

→˓PARTITION_FLAG_NEW) && (firmware_exec_partition != NULL))
{

status = ota_partition_copy(firmware_staging_partition, firmware_exec_partition);
→˓//This will copy the image from the staging area to the destination address in NVS,␣
→˓then verify it with the CRC32

if(status == MRT_STATUS_OK)
{

//TODO - JUMP TO firmware_exec_partition->image.addr
}
else
{

//TODO - handle error
}

}
else

(continues on next page)

5.2. Utilities 59

MrT

(continued from previous page)

{
// No new update in staging area, jump to application
//TODO - JUMP TO firmware_exec_partition->image.addr

}

}

OTA XFer

ota_xfer.h/c provides an ota trasnfer utility. This utility can be used to manage the transfer of an OTA image from a
server (or host) to the staging area. It will keep track of which blocks have been received, and which blocks are missing.
It will also keep track of the state of the transfer, and verify the image with the provided CRC32.

#include "ota.h"
#include "ota_xfer.h"

ota_img_mgr_t img_mgr;
ota_xfer_t xfer;
ota_partition_t* firmware_partition = NULL;

//Callback when block data packet is received
void ota_firmware_block_callback(uint32_t offset, uint8_t *data, uint32_t len)
{

ota_partition_write_image(firmware_partition, offset, data, len)

ota_xfer_write_block(&xfer, offset, data, len);

if(xfer.state == OTA_STATE_FINISHED)
{

Reset the device
}

//TODO request next block
}

//Call back when ota start packet is received
void ota_xfer_callback(const char* label, const char* strVersion, uint32_t size, uint32_
→˓t crc)
{

//Kick off new transfer
ota_xfer_init(&xfer, &ota, label, strVersion, size, crc);

ota_xfer_set_state(&xfer, OTA_STATE_BULK);
}

int main(void)
{

//Set up staging
ota_img_mgr_init(&img_mgr);

(continues on next page)

60 Chapter 5. Modules

MrT

(continued from previous page)

ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&img_mgr, "staging", spi_flash_write,␣
→˓spi_flash_read);

firmware_partition = ota_dsk_get_partition(stagingDsk, "firmware"); //This will␣
→˓return the firmware partition if it exists, or NULL if it does not exist

if(firmware_partition == NULL)
{

//TODO - handle error
}

while(1)
{

if(xfer.state == OTA_STATE_BULK)
{

//Get next missing block
uint32_t nextBlock = ota_xfer_get_next_missing_block(&xfer);
if(nextBlock > -1)
{

request_image_block(nextBlock * ota->blockSize, ota->blockSize);
}

}
}

}

PolyPacket Protocol

Included in this module is a PolyPacket protocol descriptor file poly/ota-protocol.yml. This file can be used to generate
a PolyPacket protocol for OTA transfers. The protocol can be used by itself or included in a larger protocol as a plugin.

Generating protocol service

For information on generating code for the ota protocol service, see the PolyPacket documentation.

Pushing Images to device

The protocol descriptor includes Agent profiles for the otaHost and otaDevice. The otaDevice agent simply simulates a
device that can receive OTA images, and can be used for testing. The otaHost agent can be used as a utility for reading
partitions and trasnfering images to the device.

1. Setup a simulated device with the otaDevice agent.

poly-packet -i ota-protocol.yml -a otaDevice -c tcp:8020

This will start a simulated device that will listen for connections on port 8020.

2. Setup the otaHost agent to connect to the device. Run the following command in a new terminal window.

5.2. Utilities 61

https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html
https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html

MrT

poly-packet -i ota-protocol.yml -a otaHost -c tcp:localhost:8020

This will start the otaHost agent and connect to the device.

3. Run the discover command to get a list of partitions on the device.

4. Use the flash command to transfer an image to the desired partition.

flash file: firmware.hex, version: 1.0.1, partition: spi-flash/firmware

Note: The CLI has tab complete which will show available commands and arguments

5. Run the discover command again to verify that the image was transferred. The V flag on the partition indicates
the device has verified the image with the CRC sent by the host.

62 Chapter 5. Modules

MrT

5.2.5 CRC

This module provides utility functions for calculating cyclic redundancy check (CRC) values. Right now only CRC32
is supported as it is the most common, but more will be added as needed

Use

The module can calculate CRCs on a buffer in one run, or in multiple chunks for larger buffers.

Single Chunk

#include "Utilities/CRC/crc32.h"

uint32_t crc = crc32(buffer, buffer_length);

Multiple Chunks

#include "Utilities/CRC/crc32.h"

crc32_ctx_t crc_ctx;

crc32_init(&crc_ctx);

crc32_update(&crc_ctx, buf0, buf0_len);
crc32_update(&crc_ctx, buf1, buf1_len);
crc32_update(&crc_ctx, buf2, buf2_len);

uint32_t crc = crc32_result(&crc_ctx);

5.2.6 ByteFifo

This module provides a simple byte byte_fifo in pure C. Unless there are heavy resource constraints, it is recommended
to use the regular Fifo module.

byte_fifos can be defined staticly or initiallized dynamicly

dynamic example:

#include "Modules/Utilities/byte_fifo.h"

byte_fifo_t my_fifo;

uint8_t myBuf[64];

int main(void)
{

//creates a byte_fifo that can store 64 uin16_t
byte_fifo_init(&my_fifo, 64);

(continues on next page)

5.2. Utilities 63

MrT

(continued from previous page)

uint16_t myData = 0;
for(int i =0; i < 64; i++)
{

myData++;
byte_fifo_push(myData); //

}

byte_fifo_pop_buf(&my_fifo, myBuf, 64);

return 0;
}

static example:

#include "Modules/Utilities/byte_fifo.h"

byte_fifo_DEF(my_fifo, 64); //Expands to:
/*
uint8_t my_fifo_data[64];
byte_fifo_t my_fifo = {

.mBuffer = my_fifo_data,

.mHead = 0,

.mTail = 0,

.mMaxLen = 64,

.mCount = 0,
};
*/

uint8_t myBuf[64];

int main(void)
{

uint8_t myData = 0;
for(int i =0; i < 64; i++)
{

myData++;
byte_fifo_push(myData); //

}

byte_fifo_pop_buf(&my_fifo, myBuf, 64);

return 0;
}

The main benefit of the static define is that it uses an array of ‘type’ to hold the data. This can help with
debugging when the type is a struct.

64 Chapter 5. Modules

MrT

5.2.7 COBS

Module for Consistent Overhead Byte Stuffing https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing

Consistent Overhead Byte Stuffing (COBS) is an algorithm for encoding data bytes that results in efficient, reliable,
unambiguous packet framing regardless of packet content, thus making it easy for receiving applications to recover
from malformed packets. It employs a particular byte value, typically zero, to serve as a packet delimiter (a special
value that indicates the boundary between packets). When zero is used as a delimiter, the algorithm replaces each zero
data byte with a non-zero value so that no zero data bytes will appear in the packet and thus be misinterpreted as packet
boundaries.

cobs.c/cobs.h

These provide the basic cobs utility for encoding/decoding a buffer of data.

cobs_fifo.c / cobs_fifo.h

This is a fifo which uses cobs encoding to keep track of ‘frames’ inside of the fifo. a frame is a single buffer of data.

Working with frames

You can push/pop entire frames with the fifo

cobs_fifo_t fifo;
uint8_t buf[32]; //tmp buffer
int len;

cobs_fio_init(&fifo, 256); // create a cobs fifo that can store 256 bytes

uint8_t frameA[] = { 0x11, 0x22, 0x00, 0x33};
uint8_t frameB[] = { 0x12, 0x34};

cobs_fifo_push_frame(&fifo, frameA, 4); //push frame A into fifo. The frame is encoded␣
→˓as it is pushed into the fifo
//fifo->mNextLen is now 6. because frame A has 4 bytes + overhead byte and 1 byte for␣
→˓the delimiter

cobs_fifo_push_frame(&fifo, frameB, 2); //push frame B into fifo. The frame is encoded␣
→˓as it is pushed into the fifo
//fifo->mNextLen is still 6. because frame A is still the first frame in the buffer

len = cobs_pop_frame(&fifo, buf, 32); //pop and decode next frame from fifo
//fifo->mNextLen is now 4 because the next frame is frame B (2 bytes + 1 overhead + 1␣
→˓delimiter)

len = cobs_pop_frame(&fifo, &buf[len], 32); //pop and decode next frame from fifo
//len will be the size of frame B decoded (2 bytes), buf = [0x12, 0x34]

5.2. Utilities 65

MrT

Working with Raw Bytes

if you are sending or receiving bytes over serial and need to handle encoded data, you can use the _buf functions instead
of _frame

Sender

uint8_t frameA[] = { 0x11, 0x22, 0x00, 0x33};
uint8_t buf[256];

cobs_fifo_push_frame(&fifo, frameA, 4); //push frame A into fifo. The frame is encoded␣
→˓as it is pushed into the fifo

int len = cobs_fifo_pop_buf(&fifo, buf, 32); // pop the encoded frame for sending over␣
→˓serial
//len is 6 (4 data bytes + 1 overhead + 1 delimiter)

//write delimited data to serial
uart_tx(buf, len); // buf will be [0x03, 0x11, 0x22, 0x02, 0x33, 0x00]

Receiver

uint8_t buf[256];

int len = uart_rx(buf, 256); // using buf from send example [0x03, 0x11, 0x22, 0x02,␣
→˓0x33, 0x00]

cobs_fifo_push_buf(&fifo, buf, len); //push raw data into fifo

len = cobs_fifo_pop_frame(&fifo, buf, 32); // pop and decode next frame
//len = 4, buf = [0x11, 0x22, 0x00, 0x33]

utility-json

5.2.8 PolyPacket

This Module Contains the back-end C code for protocols and services generated using the PolyPacket tool.

To generate services for this module, install the PolyPacket Tool:

pip3 install polypacket

66 Chapter 5. Modules

MrT

Packing

This section describes how packets are serialized. Each packet contains a header and an optional data section. If a
packet contains no fields (for instance an Ack) there is no data section and the Data Len is 0.

Header

Byte 0 1 2 3 4 5 6 7
Field typeId reserved Data Len Token Checksum
Type uint8 uint8 uint16 uint16 uint16

When a packet contains fields, the fields are serialized as field blocks and placed in the data section.

Field Block

Simple (single value) fields contain a typeId and the value. The parser determines the type of the value by looking up
the typeId in the field descriptor dictionary

Byte 0 1: 1+ (n/127) • • •

Field typeId Array Len (n) Value[0] Value[1] Value[2]
Type uint8 varsize DataType DataType DataType

If the field is an array/ string, it contains a Length and all of the values present in the array. The Length indicates
the number of values present in the array. Again we get the size of each value by looking up the typeId in the field
descriptor dictionary

varSize

The varSize type stores a number between 0 and 2^28, but uses the least amount of bytes required. each byte contains
7 value bits, and one ‘continue’ bit. to read the value, you shift in the lower 7 bits, if the highest bit is set, then the value
is continued on the second byte. This repeats until you get a 0 for the ‘continue’ bit.

/* Variable Size value packing
* These functions are used for packing and reading variable sized values
* This allows effecient packing of small values with the flexibility to still use␣
→˓larger values (up to 2^28). anything under 7bits is not affected
* each packed byte represents 7bits of the value, the most signifacant bit is used to␣
→˓indicate if the value is continued on the next byte
* example 0x0321 would be packed to [0xA1, 0x06]
* 0X21 & 0X80 = 0XA1
* 0x03 << 1 = 0x06 //We shift one bit for each byte to compensate for the bit␣
→˓used as the continuation flag
*/

int poly_var_size_pack(uint32_t val, uint8_t* buf)
{
uint8_t tmp = 0;

(continues on next page)

5.2. Utilities 67

MrT

(continued from previous page)

int idx =0;

do{
tmp = val & 0x7F;
val >>= 7;
if(val > 0)
{
tmp |= 0x80;
}

buf[idx++] = tmp;

} while(val > 0);

return idx;
}

5.2.9 Fifo

This module provides a Generic ‘type’ fifo in pure C. It is not as effecient as a typed fifo, but it provides the flexibity
of storing different types and structs.

Fifos can be defined staticly or initiallized dynamicly

dynamic example:

#include "Modules/Utilities/fifo.h"

fifo_t myFifo;

uint16_t myBuf[64];

int main(void)
{

//creates a fifo that can store 64 uin16_t
fifo_init(&myFifo, 64, sizeof(uint16_t));

uint16_t myData = 0;
for(int i =0; i < 64; i++)
{

myData++;
fifo_push(&myData); //

}

fifo_pop_buf(&myFifo, myBuf, 64);

return 0;
}

static example:

68 Chapter 5. Modules

MrT

#include "Modules/Utilities/fifo.h"

FIFO_DEF(myFifo, 64, uint16_t); //Expands to:
/*
uint16_t myFifo_data[64];
fifo_t myFifo = {

.mBuffer = myFifo_data,

.mHead = 0,

.mTail = 0,

.mMaxLen = 64,

.mCount = 0,

.mObjSize = sizeof(uin16_t)
};
*/

uint16_t myBuf[64];

int main(void)
{

uint16_t myData = 0;
for(int i =0; i < 64; i++)
{

myData++;
fifo_push(&myData); //

}

fifo_pop_buf(&myFifo, myBuf, 64);

return 0;
}

Note: The main benefit of the static define is that it uses an array of ‘type’ to hold the data. This can help with
debugging when the type is a struct.

5.3 Devices

5.3.1 Memory

FL-S Series NOR Flash Memory

Infineon’s FL-S serial Flash memory provides fast quad SPI NOR Flash memory with densities from 128 Mb to 1 Gb
for high-performance embedded systems. The FL-S family is AEC-Q100 qualified and supports PPAP for automotive
customers at extended temperature ranges of -40°C to +125°C.

The FL-S family brings read speeds in single, dual, and quad I/O modes up to 133 MHz SDR (single data rate), and
up to 80 MHz DDR (double data rate) delivering read bandwidth of up to 80 Mbps. Industry-leading programming
performance (up to 1.08 Mbps) speeds manufacturing throughput and lowers programming costs dramatically.

Device-Eeprom

5.3. Devices 69

MrT

SpiFlash

Datasheet: http://www.adestotech.com/wp-content/uploads/DS-AT25SF041_044.pdf

Driver for spi flash device.

5.3.2 Displays

ST727A

Device Driver for SSD1306 based oled displays

ERCxxLcd

Datasheet: https://www.mikrocontroller.net/attachment/10245/SED1565.pdf

Requires: Modules/Utilities/GFX/MonoGfx

This module is a driver for the ERC monochromatic lcd displays driven by the SED15xx driver IC

This module handles mapping the pixels to the device pages/rows/columns in a logical order. So byte 0 of the buffer
represents the first 8 pixels on the first row (top) of the display, and continues until it wraps at the end of the row

The lcd buffer stores pixel data ‘sideways’ 0[4] = byte 0, bit 4

lcd ram:

0[0] 1[0] 2[0] 3[0] 4[0] 5[0] 6[0] 7[0] 0[1] 1[1] 2[1] 3[1] 4[1] 5[1] 6[1] 7[1] 0[2] 1[2] 2[2] 3[2]
4[2] 5[2] 6[2] 7[2] 0[3] 1[3] 2[3] 3[3] 4[3] 5[3] 6[3] 7[3] 0[4] 1[4] 2[4] 3[4] 4[4] 5[4] 6[4] 7[4]
. 0[5] 1[5] 2[5] 3[5] 4[5] 5[5] 6[5] 7[5] 0[6] 1[6] 2[6] 3[6] 4[6] 5[6] 6[6] 7[6] 0[7] 1[7] 2[7]
3[7] 4[7] 5[7] 6[7] 7[7]

local buffer:

0[7] 0[6] 0[5] 0[4] 0[3] 0[2] 0[1] 0[0] , 1[7] 1[6] 1[5] 1[4] 1[3] 1[2] 1[1] 1[0] , 2[7] 2[6] 2[5] 2[4] 2[3]
2[2] 2[1] 2[0] , 3[7] 3[6] 3[5] 3[4] 3[3] 3[2] 3[1] 3[0] , 4[7] 4[6] 4[5] 4[4] 4[3] 4[2] 4[1] 4[0] , 5[7] 5[6]
5[5] 5[4] 5[3] 5[2] 5[1] 5[0] , 6[7] 6[6] 6[5] 6[4] 6[3] 6[2] 6[1] 6[0] , 7[7] 7[6] 7[5] 7[4] 7[3] 7[2] 7[1]
7[0] ,

So before writing to the device, we take a ‘block’ which is 8 pixels by 8 pixels, and rotate it to match the lcd ram

Tri-Color E-ink display

Datasheet: https://www.waveshare.com/w/upload/9/9e/1.54inch-e-paper-b-specification.pdf

Requires: Modules/Utilities/GFX/MonoGfx

driver for 1.5” tri-color e-ink display

70 Chapter 5. Modules

MrT

5.3.3 IO

opex

• Generated with MrT Device Utility

• Bus: I2C, SPI

• RegMap: Register Map

• Datasheet: https://www.st.com/resou. . .

• DigiKey: 497-18052-2-ND

• I2C Address: 0x42

Description

Driver for MCU running custom GPIO expander firmware

Updating Registers

If changes are made to the device.yml file, the code can be updated using mrtutils

mrt-device -i doc/device.yml -o .

Usage

Configure GPIO

opex_t exp;

io_init_i2c(&exp, I2C1); // Initialize expander on I2C1

io_gpio_cfg_t cfg;

cfg.mDIR = IO_GPIO_X_CFG_DIR_OUT;

io_cfg_gpio(&exp, 0, &cfg); // Configure GPIO 0 to be an output

cfg.mDIR = IO_GPIO_X_CFG_DIR_IN;
cfg.mPP = 1;
cfg.mIRQ = IO_GPIO_X_CFG_IRQ_FALLING

io_cfg_gpio(&exp, 1, &cfg); // Configure GPIO 1 to be an input with PUSH/Pull ON,␣
→˓and a falling trigger for IRQ

io_set_gpio(&exp, 1, LOW); // Sets GPIO output to LOW. Since it is configured as␣
→˓an input, this enables the internal pulldown resistor

5.3. Devices 71

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://www.st.com/resource/en/datasheet/stm8s003f3.pdf
https://www.digikey.com/products/en?KeyWords=497-18052-2-ND

MrT

Set GPIO

io_set_gpio(&exp, 0, HIGH); // Sets GPIO 0 High

Configure IRQ

io_cfg_irq(&exp, IO_IRQ_POLAR_LOW, 12) //Configure IRQ to␣
→˓pull GPIO 12 low when triggered

Register Map

Name Address Type Access Default Description
GPIO_IN 0x00 uint32 R 0x00000000 Input values for gpio 0-25
GPIO_OUT 0x04 uint32 RW 0x00000000 Output values for gpio 0-15
GPIO_DDR 0x08 uint32 R 0x00000000 Direction Register for GPIO
IRQ_SRC 0x0C uint32 R 0x00000000 latching Interrupt source mask. indicates souce of IRQ resets on read
ADC_0_VAL 0x10 uint16 R 0x0000 Output of ADC 0
ADC_1_VAL 0x12 uint16 R 0x0000 Output of ADC 1
ADC_2_VAL 0x14 uint16 R 0x0000 Output of ADC 2
ADC_3_VAL 0x16 uint16 R 0x0000 Output of ADC 3
ADC_4_VAL 0x18 uint16 R 0x0000 Output of ADC 4
PWM_0_VAL 0x1A uint16 W 0x0000 PWM value for ch 0
PWM_1_VAL 0x1C uint16 W 0x0000 PWM value for ch 1
PWM_2_VAL 0x1E uint16 W 0x0000 PWM value for ch 2
PWM_3_VAL 0x20 uint16 W 0x0000 PWM value for ch 3
PWM_4_VAL 0x22 uint16 W 0x0000 PWM value for ch 4
PWM_5_VAL 0x24 uint16 W 0x0000 PWM value for ch 5
GPIO_0_CFG 0x26 uint8 RW 0x00 Configuration for GPIO 0
GPIO_1_CFG 0x27 uint8 RW 0x00 Configuration for GPIO 1
GPIO_2_CFG 0x28 uint8 RW 0x00 Configuration for GPIO 2
GPIO_3_CFG 0x29 uint8 RW 0x00 Configuration for GPIO 3
GPIO_4_CFG 0x2A uint8 RW 0x00 Configuration for GPIO 4
GPIO_5_CFG 0x2B uint8 RW 0x00 Configuration for GPIO 5
GPIO_6_CFG 0x2C uint8 RW 0x00 Configuration for GPIO 6
GPIO_7_CFG 0x2D uint8 RW 0x00 Configuration for GPIO 7
GPIO_8_CFG 0x2E uint8 RW 0x00 Configuration for GPIO 8
GPIO_9_CFG 0x2F uint8 RW 0x00 Configuration for GPIO 9
GPIO_10_CFG 0x30 uint8 RW 0x00 Configuration for GPIO 10
GPIO_11_CFG 0x31 uint8 RW 0x00 Configuration for GPIO 11
GPIO_12_CFG 0x32 uint8 RW 0x00 Configuration for GPIO 12
GPIO_13_CFG 0x33 uint8 RW 0x00 Configuration for GPIO 13
GPIO_14_CFG 0x34 uint8 RW 0x00 Configuration for GPIO 14
GPIO_15_CFG 0x35 uint8 RW 0x00 Configuration for GPIO 15
GPIO_16_CFG 0x36 uint8 RW 0x00 Configuration for GPIO 16
GPIO_17_CFG 0x37 uint8 RW 0x00 Configuration for GPIO 17
GPIO_18_CFG 0x38 uint8 RW 0x00 Configuration for GPIO 18
GPIO_19_CFG 0x39 uint8 RW 0x00 Configuration for GPIO 19

continues on next page

72 Chapter 5. Modules

MrT

Table 1 – continued from previous page
Name Address Type Access Default Description
GPIO_20_CFG 0x3A uint8 RW 0x00 Configuration for GPIO 20
GPIO_21_CFG 0x3B uint8 RW 0x00 Configuration for GPIO 21
GPIO_22_CFG 0x3C uint8 RW 0x00 Configuration for GPIO 22
GPIO_23_CFG 0x3D uint8 RW 0x00 Configuration for GPIO 23
GPIO_24_CFG 0x3E uint8 RW 0x00 Configuration for GPIO 24
GPIO_25_CFG 0x3F uint8 RW 0x00 Configuration for GPIO 25
IRQ_CFG 0x40 uint16 RW 0x0000 IRQ Configuration
ADC_0_CFG 0x42 uint16 RW 0x0000 Configuration for ADC 0
ADC_1_CFG 0x44 uint16 RW 0x0000 Configuration for ADC 1
ADC_2_CFG 0x46 uint16 RW 0x0000 Configuration for ADC 2
ADC_3_CFG 0x48 uint16 RW 0x0000 Configuration for ADC 3
ADC_4_CFG 0x4A uint16 RW 0x0000 Configuration for ADC 4
PWM_CONFIG 0x4C uint32 RW 0x00000000 Configuration for PWM
WHO_AM_I 0x50 uint8 RW 0xAB Device ID
VERSION 0x51 uint32 RW 0x00000000 Version of firmware
EEPROM_MEM 0x70 uint8 RW 0x00 Start address of EEPROM memory on stm8. User can read/write up to 128 bytes starting at this address

Registers

GPIO_IN

Address
[0x00]

Input values for gpio 0-25

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldGPIO_IN

GPIO_OUT

Address
[0x04]

Output values for gpio 0-15

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldGPIO_OUT

5.3. Devices 73

MrT

GPIO_DDR

Address
[0x08]

Direction Register for GPIO

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldGPIO_DDR

IRQ_SRC

Address
[0x0C]

latching Interrupt source mask. indicates souce of IRQ resets on read

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldIRQ_SRC

Fields

IRQ_SRC
Source of IRQ

Name Value Description
GPIO_0 x01 IRQ triggered by GPIO0
ADC_0 x4000000 IRQ triggered by ADC0
ADC_1 x8000000 IRQ triggered by ADC1
ADC_2 x10000000 IRQ triggered by ADC2
ADC_3 x20000000 IRQ triggered by ADC3
ADC_4 x40000000 IRQ triggered by ADC4

ADC_n_VAL

Address
[—-]

Output of ADC n

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field ADC_0_VAL

74 Chapter 5. Modules

MrT

PWM_n_VAL

Address
[—-]

PWM value for ch n

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field PWM_0_VAL

GPIO_n_CFG

Address
[—-]

Configuration for GPIO n

Bit 7 6 5 4 3 2 1 0
Field DIR PP LL IRQ ALT EN

Flags

PP
Enables Push/Pull on output, and Pull-up on input

ALT
Indicates that GPIO is disabled because pin is being used for an alternate function (PWM, ADC, etc)

EN
Enables GPIO

Fields

DIR
Pin Direction

Name Value Description
IN b0 GPIO is an input
OUT b1 GPIO is an output

LL
Low Level

Name Value Description
LOW b0 Low level output
HIGH b1

IRQ
Interrupt selection

5.3. Devices 75

MrT

Name Value Description
NONE b00 No interrupt
RISING b01 Trigger on Rising
FALLING b10 Trigger on falling
ANY b11 Trigger on any

IRQ_CFG

Address
[0x40]

IRQ Configuration

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Enabled Polarity Output

Flags

Enabled
Enables IRQ signal on selected GPIO

Fields

Polarity
Sets polarity of IRQ

Name Value Description
ACTIVE_HIGH b1 GPIO is high when IRQ is pending
ACTIVE_LOW b0 GPIO is low when IRQ is pending

Output
Selects the GPIO to use for IRQ

ADC_n_CFG

Address
[—-]

Configuration for ADC n

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Treshold IRQ EN

76 Chapter 5. Modules

MrT

Flags

EN
Enables ADC Channel

Fields

Treshold
IRQ threshold for ADC channel

IRQ
Interrupt setting for ADC channel

Name Value Description
NONE b00 No interrupt
RISING b01 Trigger on Rising
FALLING b10 Trigger on falling
ANY b11 Trigger on any

PWM_CONFIG

Address
[0x4C]

Configuration for PWM

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldPeriod Prescaler CH7_EnableCH6_EnableCH5_EnableCH4_EnableCH3_EnableCH2_EnableCH1_EnableCH0_Enable

Flags

CH0_Enable
Enables PWM channel 0

CH1_Enable
Enables PWM channel 1

CH2_Enable
Enables PWM channel 2

CH3_Enable
Enables PWM channel 3

CH4_Enable
Enables PWM channel 4

CH5_Enable
Enables PWM channel 5

CH6_Enable
Enables PWM channel 6

5.3. Devices 77

MrT

CH7_Enable
Enables PWM channel 7

Fields

Period
Period for PWM signals

Prescaler
Prescaler for PWM, using 16Mhz clock

Name Value Description
PRESCALER_1 b0000 divide clock by 1 (16Mhz)
PRESCALER_2 b0001 divide clock by 2 (8Mhz)
PRESCALER_4 b0010 divide clock by 4 (4Mhz)
PRESCALER_8 b0011 divide clock by 8 (2Mhz)
PRESCALER_16 b0100 divide clock by 16 (1Mhz)
PRESCALER_32 b0101 divide clock by 32 (500Khz)
PRESCALER_64 b0110 divide clock by 64 (250Khz)
PRESCALER_128 b0111 divide clock by 128 (125Khz)
PRESCALER_256 b1000 divide clock by 256 (62.5 Khz)
PRESCALER_512 b1001 divide clock by 512 (31.25 Khz)
PRESCALER_1024 b1010 divide clock by 1024 (1.5625 KHz)
PRESCALER_2048 b1011 divide clock by 2048 ()
PRESCALER_4096 b1100 divide clock by 4096 ()
PRESCALER_8192 b1101 divide clock by 8192 ()
PRESCALER_16384 b1110 divide clock by 16384 ()
PRESCALER_32768 b1111 divide clock by 32768 ()

WHO_AM_I

Address
[0x50]

Default
[0xAB]

Device ID

Bit 7 6 5 4 3 2 1 0
Field

78 Chapter 5. Modules

MrT

Fields

ID
ID of device

Name Value Description
STM8S003F3 x70 20 pin variant
STM8S003K3 x71 32 pin variant

VERSION

Address
[0x51]

Version of firmware

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FieldMAJOR MINOR PATCH BUILD

Fields

MAJOR
Major Version

MINOR
Major Version

PATCH
Major Version

BUILD
Major Version

EEPROM_MEM

Address
[0x70]

Start address of EEPROM memory on stm8. User can read/write up to 128 bytes starting at this address

Bit 7 6 5 4 3 2 1 0
Field EEPROM_MEM

5.3. Devices 79

MrT

5.3.4 MotorDrivers

STSPIN220

• Generated with MrT Device Utility

• Bus: GPIO

• RegMap: Register Map

• Datasheet: https://www.st.com/resou. . .

• DigiKey: 497-16602-1-ND

Description

Low voltage stepper motor driver

Register Map

Name Address Type Access Default Description

Registers

5.3.5 Biometric

ANV401 Fingerprint Sensor

This is the device driver for the ANV401 capacitive fingerprint sensor module.

Example Code

This example is based on an stm32 platform using huart1 for the device, and the irq and reset signals labeled as FIN-
GER_EXTI and FINER_RST

/* Includes --*/
#include "main.h"
#include "Devices/Biometric/ANV401-FingerprintSensor/anv401.h"

/* Private variables ---*/
anv401_t fpSensor;
volatile bool fpPresent = false;
volatile bool addNewUser = false;

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{

if(GPIO_Pin == FINGER_EXTI_Pin)
{

(continues on next page)

80 Chapter 5. Modules

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://www.st.com/resource/en/datasheet/stspin220.pdf
https://www.digikey.com/products/en?KeyWords=497-16602-1-ND

MrT

(continued from previous page)

fpPresent = true;
}

if(GPIO_Pin == NEW_USER_BUTTON_Pin)
{

addNewUser = true;
}

}

int main(void)
{

/* Initialization of HAL, UART, GPIO etc.. */

//Initialize driver
anv401_init(&fpSensor, MRT_GPIO(FINGER_EXTI), MRT_GPIO(FINGER_RST)));

while(1)
{

if(addNewUser)
{

//Add whoever is touching the sensor as a new user with permission level 3
anv401_add_user(&fpSensor, 3);

addNewUser = false;
}

if(fpPresent)
{

anv401_user_t user = anv401_compare_fingerprint(&fpSensor);

if(user.mId == ANV401_USER_NONE)
{

printf("No Matching User found, Access denied");
}
else
{

printf("User identified\nId: %04X\nPerm: %d", user.mId, user.mPerm);
}

fpPresent = false;
}

}

}

When the NEW_USER_BUTTON is pressed, the finger currently touching the sensor would be added as a new user.
Whenever a finger touches the sensor, it will toggle the EXTI/IRQ signal, and then we can look for a match

5.3. Devices 81

MrT

5.3.6 Sensors

sht31

• Generated with MrT Device Utility

• Bus: I2C

• RegMap: Register Map

• Datasheet: https://media.digikey.co. . .

• DigiKey: 1649-1011-1-ND

• I2C Address: 0x44

Description

description

Register Map

Name Address Type Access Default Description

Registers

LIS2DH12

• Generated with MrT Device Utility

• Bus: I2C,SPI

• RegMap: Register Map

• Datasheet: http://www.st.com/conten. . .

• DigiKey: 497-14851-1-ND

• I2C Address: 0x32

Description

MEMS Digital Output Motion Sensor Ultra Low-Power High Performance 3-Axis “Femto” Accelerometer

82 Chapter 5. Modules

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf
https://www.digikey.com/products/en?KeyWords=1649-1011-1-ND
https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
http://www.st.com/content/ccc/resource/technical/document/datasheet/12/c0/5c/36/b9/58/46/f2/DM00091513.pdf/files/DM00091513.pdf/jcr:content/translations/en.DM00091513.pdf
https://www.digikey.com/products/en?KeyWords=497-14851-1-ND

MrT

Register Map

Name Address Type Access Default Description
STATUS_AUX 0x07 uint8 R 0x00 n/a
OUT_TEMP 0x0C uint16 R 0x0000 Temperature sensor data
WHO_AM_I 0x0F uint8 R 0x33 Device identification register
CTRL0 0x1E uint8 RW 0x10 Control Register 0
TEMP_CFG 0x1F uint8 RW 0x07 n/a
CTRL1 0x20 uint8 RW 0x07 Control Register 1
CTRL2 0x21 uint8 RW 0x00 Control Register 2
CTRL3 0x22 uint8 RW 0x00 Control Register 3
CTRL4 0x23 uint8 RW 0x00 Control Register 4
CTRL5 0x24 uint8 RW 0x00 Control Register 5
CTRL6 0x25 uint8 RW 0x00 Control Register 6
REFERENCE 0x26 uint8 RW 0x00 Reference value for interrupt generation
STATUS 0x27 uint8 R 0x00 n/a
OUT_X 0x28 uint16 R 0x0000 X-axis acceleration data
OUT_Y 0x2A uint16 R 0x0000 Y-axis acceleration data
OUT_Z 0x2C uint16 R 0x0000 Z-axis acceleration data
FIFO_CTRL 0x2E uint8 RW 0x00 Fifo Control register
FIFO_SRC 0x2F uint8 R 0x00 Fifo status register
INT1_CFG 0x30 uint8 RW 0x00 Interrupt 1 config register
INT1_SRC 0x31 uint8 R 0x00 Interrupt 1 source register
INT1_THS 0x32 uint8 RW 0x00 Interrupt 1 threshold register
INT1_DURATION 0x33 uint8 RW 0x00 Interrupt 1 duration register
INT2_CFG 0x34 uint8 RW 0x00 Interrupt 2 config register
INT2_SRC 0x35 uint8 R 0x00 Interrupt 2 source register
INT2_THS 0x36 uint8 RW 0x00 Interrupt 2 threshold register
INT2_DURATION 0x37 uint8 RW 0x00 Interrupt 2 duration register
CLICK_CFG 0x38 uint8 RW 0x00 Click config
CLICK_SRC 0x39 uint8 R 0x00 Click source
CLICK_THS 0x3A uint8 RW 0x00 Click Threshold
TIME_LIMIT 0x3B uint8 RW 0x00 Click time limit
TIME_LATENCY 0x3C uint8 RW 0x00 Click time latency
TIME_WINDOW 0x3D uint8 RW 0x00 Click time window
ACT_THS 0x3E uint8 RW 0x00 Activity threshold
ACT_DUR 0x3F uint8 RW 0x00 Activity duration

Registers

STATUS_AUX

Address
[0x07]

n/a

Bit 7 6 5 4 3 2 1 0
Field STATUS_AUX

5.3. Devices 83

MrT

OUT_TEMP

Address
[0x0C]

Temperature sensor data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field OUT_TEMP

WHO_AM_I

Address
[0x0F]

Default
[0x33]

Device identification register

Bit 7 6 5 4 3 2 1 0
Field

Fields

WHO_AM_I
Device identification register

CTRL0

Address
[0x1E]

Default
[0x10]

Control Register 0

Bit 7 6 5 4 3 2 1 0
Field

84 Chapter 5. Modules

MrT

Fields

CTRL0
Control Register 0

TEMP_CFG

Address
[0x1F]

Default
[0x07]

n/a

Bit 7 6 5 4 3 2 1 0
Field

Fields

TEMP_CFG
n/a

CTRL1

Address
[0x20]

Default
[0x07]

Control Register 1

Bit 7 6 5 4 3 2 1 0
Field LOW_PWR Z_EN Y_EN X_EN

Flags

X_EN
X-axis enable

Y_EN
Y-axis enable

Z_EN
Z-axis enable

LOW_PWR
Low-power mode enable

5.3. Devices 85

MrT

Fields

ODR
Data rate selection

Name Value Descriptions
PWR_DWN b0000 Power-down mode
1Hz b0001 HR/ Normal / Low-power mode (1 Hz)
10Hz b1000 HR/ Normal / Low-power mode (10 Hz)
25Hz b1001 HR/ Normal / Low-power mode (25 Hz)
50Hz b1000000 HR/ Normal / Low-power mode (50 Hz)
100Hz b1000001 HR/ Normal / Low-power mode (100 Hz)
200Hz b1001000 HR/ Normal / Low-power mode (200 Hz)
400Hz b1001001 HR/ Normal / Low-power mode (400 Hz)
1620Hz b0111 Low-power mode (1.620 kHz)
5376Hz b0111 HR/ Normal (1.344 kHz) / Low-power mode (5.376 kHz)

CTRL2

Address
[0x21]

Default
[0x00]

Control Register 2

Bit 7 6 5 4 3 2 1 0
Field FDS HPCLICK HP_IA2 HP_IA1

Flags

HP_IA1
High-pass filter enabled for AOI function on Interrupt 1

HP_IA2
High-pass filter enabled for AOI function on Interrupt 2

HPCLICK
High-pass filter enabled for Click function

FDS
Filtered data selection

86 Chapter 5. Modules

MrT

CTRL3

Address
[0x22]

Default
[0x00]

Control Register 3

Bit 7 6 5 4 3 2 1 0
Field

Fields

CTRL3
Control Register 3

CTRL4

Address
[0x23]

Default
[0x00]

Control Register 4

Bit 7 6 5 4 3 2 1 0
Field

Fields

CTRL4
Control Register 4

CTRL5

Address
[0x24]

Default
[0x00]

Control Register 5

Bit 7 6 5 4 3 2 1 0
Field

5.3. Devices 87

MrT

Fields

CTRL5
Control Register 5

CTRL6

Address
[0x25]

Default
[0x00]

Control Register 6

Bit 7 6 5 4 3 2 1 0
Field

Fields

CTRL6
Control Register 6

REFERENCE

Address
[0x26]

Default
[0x00]

Reference value for interrupt generation

Bit 7 6 5 4 3 2 1 0
Field

Fields

REFERENCE
Reference value for interrupt generation

88 Chapter 5. Modules

MrT

STATUS

Address
[0x27]

n/a

Bit 7 6 5 4 3 2 1 0
Field STATUS

OUT_X

Address
[0x28]

X-axis acceleration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field OUT_X

OUT_Y

Address
[0x2A]

Y-axis acceleration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field OUT_Y

OUT_Z

Address
[0x2C]

Z-axis acceleration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field OUT_Z

5.3. Devices 89

MrT

FIFO_CTRL

Address
[0x2E]

Default
[0x00]

Fifo Control register

Bit 7 6 5 4 3 2 1 0
Field

Fields

FIFO_CTRL
Fifo Control register

FIFO_SRC

Address
[0x2F]

Fifo status register

Bit 7 6 5 4 3 2 1 0
Field FIFO_SRC

INT1_CFG

Address
[0x30]

Default
[0x00]

Interrupt 1 config register

Bit 7 6 5 4 3 2 1 0
Field

90 Chapter 5. Modules

MrT

Fields

INT1_CFG
Interrupt 1 config register

INT1_SRC

Address
[0x31]

Interrupt 1 source register

Bit 7 6 5 4 3 2 1 0
Field INT1_SRC

INT1_THS

Address
[0x32]

Default
[0x00]

Interrupt 1 threshold register

Bit 7 6 5 4 3 2 1 0
Field

Fields

INT1_THS
Interrupt 1 threshold register

INT1_DURATION

Address
[0x33]

Default
[0x00]

Interrupt 1 duration register

Bit 7 6 5 4 3 2 1 0
Field

5.3. Devices 91

MrT

Fields

INT1_DURATION
Interrupt 1 duration register

INT2_CFG

Address
[0x34]

Default
[0x00]

Interrupt 2 config register

Bit 7 6 5 4 3 2 1 0
Field

Fields

INT2_CFG
Interrupt 2 config register

INT2_SRC

Address
[0x35]

Interrupt 2 source register

Bit 7 6 5 4 3 2 1 0
Field INT2_SRC

INT2_THS

Address
[0x36]

Default
[0x00]

Interrupt 2 threshold register

Bit 7 6 5 4 3 2 1 0
Field

92 Chapter 5. Modules

MrT

Fields

INT2_THS
Interrupt 2 threshold register

INT2_DURATION

Address
[0x37]

Default
[0x00]

Interrupt 2 duration register

Bit 7 6 5 4 3 2 1 0
Field

Fields

INT2_DURATION
Interrupt 2 duration register

CLICK_CFG

Address
[0x38]

Default
[0x00]

Click config

Bit 7 6 5 4 3 2 1 0
Field

Fields

CLICK_CFG
Click config

5.3. Devices 93

MrT

CLICK_SRC

Address
[0x39]

Click source

Bit 7 6 5 4 3 2 1 0
Field CLICK_SRC

CLICK_THS

Address
[0x3A]

Default
[0x00]

Click Threshold

Bit 7 6 5 4 3 2 1 0
Field

Fields

CLICK_THS
Click Threshold

TIME_LIMIT

Address
[0x3B]

Default
[0x00]

Click time limit

Bit 7 6 5 4 3 2 1 0
Field

94 Chapter 5. Modules

MrT

Fields

TIME_LIMIT
Click time limit

TIME_LATENCY

Address
[0x3C]

Default
[0x00]

Click time latency

Bit 7 6 5 4 3 2 1 0
Field

Fields

TIME_LATENCY
Click time latency

TIME_WINDOW

Address
[0x3D]

Default
[0x00]

Click time window

Bit 7 6 5 4 3 2 1 0
Field

Fields

TIME_WINDOW
Click time window

5.3. Devices 95

MrT

ACT_THS

Address
[0x3E]

Default
[0x00]

Activity threshold

Bit 7 6 5 4 3 2 1 0
Field

Fields

ACT_THS
Activity threshold

ACT_DUR

Address
[0x3F]

Default
[0x00]

Activity duration

Bit 7 6 5 4 3 2 1 0
Field

Fields

ACT_DUR
Activity duration

HTS221

• Generated with MrT Device Utility

• Bus: I2C

• RegMap: Register Map

• Datasheet: https://www.st.com/conte. . .

• DigiKey: 497-15382-1-ND

• I2C Address: 0xBE

96 Chapter 5. Modules

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.DM00116291.pdf
https://www.digikey.com/products/en?KeyWords=497-15382-1-ND

MrT

Description

Humidity and Temperature Sensor

Register Map

Name Address Type Access Default Description
WHO_AM_I 0x0F uint8 R 0xBC Id Register
AV_CONF 0x10 uint8 RW 0x1B Humidity and temperature resolution mode
CTRL1 0x20 uint8 RW 0x00 Control register 1
CTRL2 0x21 uint8 RW 0x00 Control register 2
CTRL3 0x22 uint8 RW 0x00 Control register 3
STATUS 0x27 uint8 R 0x00 Status register
HUMIDITY_OUT 0x28 int16 R 0x0000 Relative humidity data
TEMP_OUT 0x2A int16 R 0x0000 Temperature data
H0_rH_x2 0x30 uint8 R 0x00 Calibration data
H1_rH_x2 0x31 uint8 R 0x00 Calibration data
T0_DEGC_x8 0x32 uint8 R 0x00 Calibration data
T1_DEGC_x8 0x33 uint8 R 0x00 Calibration data
T1T0_MSB 0x35 uint8 R 0x00 Calibration data
H0_T0_OUT 0x36 int16 R 0x0000 Calibration data
H1_T0_OUT 0x3A int16 R 0x0000 Calibration data
T0_OUT 0x3C int16 R 0x0000 Calibration data
T1_OUT 0x3E int16 R 0x0000 Calibration data

Registers

WHO_AM_I

Address
[0x0F]

Default
[0xBC]

Id Register

Bit 7 6 5 4 3 2 1 0
Field

5.3. Devices 97

MrT

Fields

WHO_AM_I
Id Register

AV_CONF

Address
[0x10]

Default
[0x1B]

Humidity and temperature resolution mode

Bit 7 6 5 4 3 2 1 0
Field AVGT AVGH

Fields

AVGH
Selects the number of Humidity samples to average for data output

Name Value Descriptions
4 b000 4 samples
8 b001 8 samples
16 b010 16 samples
32 b011 32 samples
64 b100 64 samples
128 b101 128 samples
256 b110 256 samples
512 b111 512 samples

AVGT
Selects the number of Temperature samples to average for data output

Name Value Descriptions
2 b000 2 samples
4 b001 4 samples
8 b010 8 samples
16 b011 16 samples
32 b100 32 samples
64 b101 64 samples
128 b110 128 samples
256 b111 256 samples

98 Chapter 5. Modules

MrT

CTRL1

Address
[0x20]

Default
[0x00]

Control register 1

Bit 7 6 5 4 3 2 1 0
Field BDU ODR

Flags

PD
power down mode

BDU
Block Data update. Prevents update until LSB of data is read

Fields

ODR
Selects the Output rate for the sensor data

Name Value Descriptions
ONESHOT b00 readings must be requested
1HZ b01 1 hz sampling
7HZ b10 7 hz sampling
12_5HZ b11 12.5 hz sampling

CTRL2

Address
[0x21]

Default
[0x00]

Control register 2

Bit 7 6 5 4 3 2 1 0
Field HEATER ONESHOT

5.3. Devices 99

MrT

Flags

BOOT
Reboot memory content

HEATER
Enable intenal heating element

ONESHOT
Start conversion for new data

CTRL3

Address
[0x22]

Default
[0x00]

Control register 3

Bit 7 6 5 4 3 2 1 0
Field

Fields

CTRL3
Control register 3

STATUS

Address
[0x27]

Default
[0x00]

Status register

Bit 7 6 5 4 3 2 1 0
Field HUM_READY TEMP_READY

100 Chapter 5. Modules

MrT

Flags

TEMP_READY
indicates that a temperature reading is ready

HUM_READY
indicates that a humidity reading is ready

HUMIDITY_OUT

Address
[0x28]

Relative humidity data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

HUM_OUT
Current ADC reading for humidity sensor

TEMP_OUT

Address
[0x2A]

Temperature data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

TEMP_OUT
Current ADC reading for temperature sensor

5.3. Devices 101

MrT

H0_rH_x2

Address
[0x30]

Calibration data

Bit 7 6 5 4 3 2 1 0
Field H0_rH_x2

H1_rH_x2

Address
[0x31]

Calibration data

Bit 7 6 5 4 3 2 1 0
Field H1_rH_x2

T0_DEGC_x8

Address
[0x32]

Calibration data

Bit 7 6 5 4 3 2 1 0
Field T0_DEGC_x8

T1_DEGC_x8

Address
[0x33]

Calibration data

Bit 7 6 5 4 3 2 1 0
Field T1_DEGC_x8

102 Chapter 5. Modules

MrT

T1T0_MSB

Address
[0x35]

Calibration data

Bit 7 6 5 4 3 2 1 0
Field T1T0_MSB

H0_T0_OUT

Address
[0x36]

Calibration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field H0_T0_OUT

H1_T0_OUT

Address
[0x3A]

Calibration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field H1_T0_OUT

T0_OUT

Address
[0x3C]

Calibration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field T0_OUT

5.3. Devices 103

MrT

T1_OUT

Address
[0x3E]

Calibration data

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field T1_OUT

Device-LSM6D

device driver for lsm6d iNEMO inertial module (Accelerometer and Gyroscope)

5.3.7 RF

device-nrf24

driver for nrf24 transceiver

5.3.8 Power

README

This README would normally document whatever steps are necessary to get your application up and running.

What is this repository for?

• Quick summary

• Version

• Learn Markdown

How do I get set up?

• Summary of set up

• Configuration

• Dependencies

• Database configuration

• How to run tests

• Deployment instructions

104 Chapter 5. Modules

https://bitbucket.org/tutorials/markdowndemo

MrT

Contribution guidelines

• Writing tests

• Code review

• Other guidelines

Who do I talk to?

• Repo owner or admin

• Other community or team contact

stc3117

• Generated with MrT Device Utility

• Bus: I2C

• RegMap: Register Map

• Datasheet: https://www.st.com/conte. . .

• DigiKey: 497-15387-1-ND

• I2C Address: 0xE0

Description

Gas gauge IC with battery charger control

5.3. Devices 105

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://www.st.com/content/ccc/resource/technical/document/datasheet/ea/b5/01/6e/dd/f0/49/3e/DM00105047.pdf/files/DM00105047.pdf/jcr:content/translations/en.DM00105047.pdf
https://www.digikey.com/products/en?KeyWords=497-15387-1-ND

MrT

Register Map

Name Ad-
dress

Type Ac-
cess

De-
fault

Description

MODE 0x00 uint8 RW 0x00 Mode register
CTRL 0x01 uint8 RW 0x00 Control and status register
SOC 0x02 uint16 RW 0x0000 Battery SOC (LSB = 1/512 %)
COUNTER 0x04 uint16 R 0x0000 Number of conversions
CURRENT 0x06 uint16 R 0x0000 Battery current
VOLTAGE 0x08 uint16 R 0x0000 Battery voltage (LSB = 2.2 mV)
TEMPERATURE 0x0A uint8 R 0x00 Temperature in degrees C (LSB = 1deg C)
AVG_CURRENT 0x0B uint16 RW 0x0000 Battery average current or SOC change rate
OCV 0x0D uint16 RW 0x0000 OCV register (LSV = 0.55 mV)
CC_CNF 0x0F uint16 RW 0x018B Battery average current or SOC change rate
VM_CNF 0x11 uint16 RW 0x0141 Voltage gas gauge algorithm parameter
ALARM_SOC 0x13 uint8 RW 0x02 SOC alarm level in (LSB = 0.5%)
ALARM_VOLTAGE 0x14 uint8 RW 0xAA Battery low voltage alarm level (LSB = 17.6 mV)
CUR-
RENT_THRES

0x15 uint8 RW 0x0A Current threshold for current monitoring (LSB =
47.04 uV)

CMONIT_COUNT 0x16 uint8 R 0x78 Current monitoring counter
CMONIT_MAX 0x17 uint8 RW 0x78 Maximum counter value for current monitoring
ID 0x18 uint8 R 0x16 Part type ID = 16h
CC_ADJ 0x1B uint16 R 0x0000 Coulomb counter adjustment register
VM_ADJ 0x1D uint16 R 0x0000 Voltage mode adjustment register

Registers

MODE

Address
[0x00]

Mode register

Bit 7 6 5 4 3 2 1 0
Field FORCE_VM FORCE_CC GG_RUN ALM_ENA FORCE_CD BIBATD_PU VMODE

Flags

VMODE
Power saving voltage mode

BIBATD_PU
BATD internal pull-up enable

FORCE_CD
Force CD output high

106 Chapter 5. Modules

MrT

ALM_ENA
Enable Alarm function

GG_RUN
creates a flag at bit 1 of the DUMMY register

FORCE_CC
Force the relaxation timer to switch to the Coulomb counter (CC) state

FORCE_VM
Force the relaxation timer to switch to voltage mode (VM) state

CTRL

Address
[0x01]

Control and status register

Bit 7 6 5 4 3 2 1 0
Field CTRL

SOC

Address
[0x02]

Battery SOC (LSB = 1/512 %)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

SOC
Battery SOC (LSB = 1/512 %)

COUNTER

Address
[0x04]

Default
[0x0000]

5.3. Devices 107

MrT

Number of conversions

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

COUNTER
Number of conversions

CURRENT

Address
[0x06]

Default
[0x0000]

Battery current

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

CURRENT
Battery current

VOLTAGE

Address
[0x08]

Default
[0x0000]

Battery voltage (LSB = 2.2 mV)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

108 Chapter 5. Modules

MrT

Fields

VOLTAGE
Battery voltage (LSB = 2.2 mV)

TEMPERATURE

Address
[0x0A]

Default
[0x00]

Temperature in degrees C (LSB = 1deg C)

Bit 7 6 5 4 3 2 1 0
Field

Fields

TEMPERATURE
Temperature in degrees C (LSB = 1deg C)

AVG_CURRENT

Address
[0x0B]

Default
[0x0000]

Battery average current or SOC change rate

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AVG_CURRENT
Battery average current or SOC change rate

5.3. Devices 109

MrT

OCV

Address
[0x0D]

Default
[0x0000]

OCV register (LSV = 0.55 mV)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

OCV
OCV register (LSV = 0.55 mV)

CC_CNF

Address
[0x0F]

Default
[0x018B]

Battery average current or SOC change rate

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

CC_CNF
Battery average current or SOC change rate

VM_CNF

Address
[0x11]

Default
[0x0141]

Voltage gas gauge algorithm parameter

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

110 Chapter 5. Modules

MrT

Fields

VM_CNF
Voltage gas gauge algorithm parameter

ALARM_SOC

Address
[0x13]

Default
[0x02]

SOC alarm level in (LSB = 0.5%)

Bit 7 6 5 4 3 2 1 0
Field

Fields

ALARM_SOC
SOC alarm level in (LSB = 0.5%)

ALARM_VOLTAGE

Address
[0x14]

Default
[0xAA]

Battery low voltage alarm level (LSB = 17.6 mV)

Bit 7 6 5 4 3 2 1 0
Field

Fields

ALARM_VOLTAGE
Battery low voltage alarm level (LSB = 17.6 mV)

5.3. Devices 111

MrT

CURRENT_THRES

Address
[0x15]

Default
[0x0A]

Current threshold for current monitoring (LSB = 47.04 uV)

Bit 7 6 5 4 3 2 1 0
Field

Fields

CURRENT_THRES
Current threshold for current monitoring (LSB = 47.04 uV)

CMONIT_COUNT

Address
[0x16]

Default
[0x78]

Current monitoring counter

Bit 7 6 5 4 3 2 1 0
Field

Fields

CMONIT_COUNT
Current monitoring counter

CMONIT_MAX

Address
[0x17]

Default
[0x78]

Maximum counter value for current monitoring

Bit 7 6 5 4 3 2 1 0
Field

112 Chapter 5. Modules

MrT

Fields

CMONIT_MAX
Maximum counter value for current monitoring

ID

Address
[0x18]

Default
[0x16]

Part type ID = 16h

Bit 7 6 5 4 3 2 1 0
Field

Fields

ID
Part type ID = 16h

CC_ADJ

Address
[0x1B]

Default
[0x0000]

Coulomb counter adjustment register

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

CC_ADJ
Coulomb counter adjustment register

5.3. Devices 113

MrT

VM_ADJ

Address
[0x1D]

Default
[0x0000]

Voltage mode adjustment register

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

VM_ADJ
Voltage mode adjustment register

BQ28Z

• Generated with MrT Device Utility

• Bus: I2C

• RegMap: Register Map

• Datasheet: http://www.ti.com/lit/ds. . .

• DigiKey: 296-43394-1-ND

• I2C Address: 0xAA

Description

Battery Fuel Gauge

Register Map

Name Address Type Access Default Description
DUMMY 0x00 uint16 R 0xDEAD dummy register
ManufacturerAccess_ControlStatus 0x00 uint16 RW 0x0000 Control Register
AtRate 0x02 int16 RW 0x0000 Read/Write. The value is a signed integer with the negative value indicating a discharge current value. The default value is 0 and forces AtRateTimeToEmpty() to return 65535.
AtRateTimeToEmpty 0x04 uint16 R 0x0000 This read-only function returns an unsigned integer value to predict remaining operating time based on battery discharge at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicates AtRate() = 0. The gas gauge updates the AtRateTimeToEmpty() within 1 s after the system sets the AtRate() value. The gas gauge updates these parameters every 1 s. The commands are used in NORMAL mode.
Temperature 0x06 uint16 R 0x0000 This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured by the gas gauge and is used for the gauging algorithm. It reports either InternalTemperature() or external thermistor temperature depending on the setting of the TEMPS bit in Pack configuration.
Voltage 0x08 uint16 R 0x0000 This read-only function returns an unsigned integer value of the measured cell pack in mV with a range of 0 12000 mV.
BatteryStatus 0x0A uint16 R 0x0000 See the Flags register.
Current 0x0C int16 R 0x0000 This read-only function returns a signed integer value that is the instantaneous current flow through the sense resistor. The value is updated every 1 s. Units are mA.
MaxError 0x0E uint8 R 0x00 This read-word function returns the expected margin of error
RemainingCapacity 0x10 uint16 R 0x0000 This read-only command returns the predicted remaining capacity based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.
FullChargeCapacity 0x12 uint16 R 0x0000 This read-only command returns the predicted capacity of the battery at full charge based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.
AverageCurrent 0x14 int16 R 0x0000 This read-only function returns a signed integer value that is the average current flow through the sense resistor. The value is updated every 1 s. Units are mA.

continues on next page

114 Chapter 5. Modules

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
http://www.ti.com/lit/ds/symlink/bq28z610.pdf
https://www.digikey.com/products/en?KeyWords=296-43394-1-ND

MrT

Table 3 – continued from previous page
Name Address Type Access Default Description
AverageTimeToEmpty 0x16 uint16 R 0x0000 Uses average current value with a time constant of 15 s for this method. A value of 65535 means the battery is not being discharged.
AverageTimeToFull 0x18 uint16 R 0x0000 This read-only function returns a unsigned integer value predicting time to reach full charge for the battery in units of minutes based on AverageCurrent(). The computation accounts for the taper current time extension from linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.
StandbyCurrent 0x1A int16 R 0x0000 This read-only function returns a signed integer value of measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially it will report the standby current programmed in initial standby and after several seconds in standby mode will report the measured standby. The register value is updated every 1 s when measured current is above the deadband and is less than or equal to 2 × initial standby. The first and last values that meet these criteria are not averaged in since they may not be stable values. To approximate to a 1-min time constant each new value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current and approximate 7% of the current measured average current.
StandbyTimeToEmpty 0x1C uint16 R 0x0000 This read-only function returns a unsigned integer value predicting remaining battery life at standby rate of discharge in units of minutes. The computation uses Nominal Available Capacity (NAC) for the calculation. A value of 65535 indicates the battery is not being discharged.
MaxLoadCurrent 0x1E int16 R 0x0000 This read-only function returns a signed integer value in units of mA of maximum load conditions. The MaxLoadCurrent() is an adaptive measurement which is initially reported as the maximum load current programmed in initial Max Load Current register. If the measured current is ever greater than the initial Max Load Current then the MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC of less than 50%. This will prevent the reported value from maintaining an unusually high value.
MaxLoadTimeToEmpty 0x20 uint16 R 0x0000 This read-only function returns a unsigned integer value predicting remaining battery life at the maximum discharge load current rate in units of minutes. A value of 65535 indicates that the battery is not being discharged.
AveragePower 0x22 int16 R 0x0000 This read-only function returns a signed integer value of average power during battery charging and discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.
BTPDischargeSet 0x24 int16 RW 0x0000 This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the RemCap drops below the set threshold in DF register.
BTPChargeSet 0x26 int16 RW 0x0000 This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.
InternalTemperature 0x28 uint16 R 0x0000 This read-only function returns an unsigned integer value of the measured internal temperature of the device in 0.1-k units measured by the gas gauge.
CycleCount 0x2A uint16 R 0x0000 This read-only function returns an unsigned integer value of the number of cycles the battery has experienced a discharge (range 0 to 65535). One cycle occurs when accumulated discharge greater than or equal to CC threshold.
RelativeStateOfCharge 0x2C uint8 R 0x00 This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as percentage of FullChargeCapacity() with a range of 0% to 100%.
StateOfHealth 0x2E uint8 R 0x00 This read-only function returns an unsigned integer value expressed as a percentage of the ratio of predicted FCC (25C SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0% to 100% respectively.
ChargeVoltage 0x30 uint16 R 0x0000 Returns the desired charging voltage in mV to the charger
ChargeCurrent 0x32 uint16 R 0x0000 Returns the desired charging current in mA to the charger
DesignCapacity 0x3C uint16 R 0x0000 In SEALED and UNSEALED access This command returns the value stored in Design Capacity and is expressed in mAh. This is intended to be a theoretical or nominal capacity of a new pack but should have no bearing on the operation of the gas gauge functionality.
AltManufacturerAccess 0x3E uint16 R 0x0000 MAC Data block command
MACData 0x40 uint16 R 0x0000 MAC Data block
SafetyAlert 0x50 uint32 R 0x00000000 This command returns the SafetyAlert flags on AltManufacturerAccess or MACData.
MACDataSum 0x60 uint8 R 0x00 MAC Data block checksum
MACDataLen 0x61 uint8 R 0x00 MAC Data block length

Registers

DUMMY

Address
[0x00]

Default
[0xDEAD]

dummy register

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field BIT1 BIT0

Flags

BIT0
creates a flag at bit 0 of the DUMMY register

BIT1
creates a flag at bit 1 of the DUMMY register

5.3. Devices 115

MrT

Fields

REMAINING
creates a 14 bit field using the remaing bits

Name Address Description
MIN x00 creates a macro for the minimum 14 bit value
MAX x3fff creates a macro for the maximum 14 bit value

ManufacturerAccess_ControlStatus

Address
[0x00]

Default
[0x0000]

Control Register

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field SECU-

RITY_Mode
AUTHCALM CheckSum-

Valid
BTP_INT LDMDR_DISVOK QMax

Flags

AUTHCALM
Automatic Calibration Mode

CheckSumValid
Checksum Valid

BTP_INT
Battery Trip Point Interrupt. Setting and clearing this bit depends on various conditions

LDMD
LOAD Mode

R_DIS
Resistance Updates

VOK
Voltage OK for QMax Update

QMax
QMax Updates. This bit toggles after every QMax update.

116 Chapter 5. Modules

MrT

Fields

SECURITY_Mode
Security Mode

Name Address Description
Reserved b00 Reserved
Full_Access b01 Full Access
Unsealed b10 Unsealed
Sealed b11 Sealed

AtRate

Address
[0x02]

Default
[0x0000]

Read/Write. The value is a signed integer with the negative value indicating a discharge current value. The default
value is 0 and forces AtRateTimeToEmpty() to return 65535.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AtRate
Read/Write. The value is a signed integer with the negative value indicating a discharge current value.
The default value is 0 and forces AtRateTimeToEmpty() to return 65535.

AtRateTimeToEmpty

Address
[0x04]

Default
[0x0000]

This read-only function returns an unsigned integer value to predict remaining operating time based on battery discharge
at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicates AtRate() = 0. The gas gauge
updates the AtRateTimeToEmpty() within 1 s after the system sets the AtRate() value. The gas gauge updates these
parameters every 1 s. The commands are used in NORMAL mode.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

5.3. Devices 117

MrT

Fields

AtRateTimeToEmpty
This read-only function returns an unsigned integer value to predict remaining operating time based
on battery discharge at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535
indicates AtRate() = 0. The gas gauge updates the AtRateTimeToEmpty() within 1 s after the system
sets the AtRate() value. The gas gauge updates these parameters every 1 s. The commands are used
in NORMAL mode.

Temperature

Address
[0x06]

Default
[0x0000]

This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured by the gas gauge and
is used for the gauging algorithm. It reports either InternalTemperature() or external thermistor temperature depending
on the setting of the TEMPS bit in Pack configuration.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

Temperature
This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured
by the gas gauge and is used for the gauging algorithm. It reports either InternalTemperature() or
external thermistor temperature depending on the setting of the TEMPS bit in Pack configuration.

Voltage

Address
[0x08]

Default
[0x0000]

This read-only function returns an unsigned integer value of the measured cell pack in mV with a range of 0 12000 mV.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

118 Chapter 5. Modules

MrT

Fields

Voltage
This read-only function returns an unsigned integer value of the measured cell pack in mV with a
range of 0 12000 mV.

BatteryStatus

Address
[0x0A]

Default
[0x0000]

See the Flags register.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field TCA OTA TDA RCA RTA INIT DSG FC FD Error_Code

Flags

FD
Fully Discharged

FC
Fully Charged

DSG
Discharging

INIT
Initialization

RTA
Remaining Time Alarm

RCA
Remaining Capacity Alarm

TDA
Terminate Discharge Alarm

OTA
Overtemperature Alarm

TCA
Terminate Charge Alarm

OCA
Overcharged Alarm

5.3. Devices 119

MrT

Fields

Error_Code
Error Code

Name Address Description
OK b0000 OK
Busy b0001 Busy
Reserved_Command b0010 Reserved_Command
Unsupported_Command b0011 Unsupported_Command
AccessDenied b0100 AccessDenied
Overflow_Underflow b0101 Overflow_Underflow
BadSize b0110 BadSize
UnknownError b0111 UnknownError

Current

Address
[0x0C]

Default
[0x0000]

This read-only function returns a signed integer value that is the instantaneous current flow through the sense resistor.
The value is updated every 1 s. Units are mA.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

Current
This read-only function returns a signed integer value that is the instantaneous current flow through
the sense resistor. The value is updated every 1 s. Units are mA.

MaxError

Address
[0x0E]

Default
[0x00]

This read-word function returns the expected margin of error

Bit 7 6 5 4 3 2 1 0
Field

120 Chapter 5. Modules

MrT

Fields

MaxError
This read-word function returns the expected margin of error

RemainingCapacity

Address
[0x10]

Default
[0x0000]

This read-only command returns the predicted remaining capacity based on rate (per configured Load Select) temper-
ature present depth-of-discharge and stored impedance. Values are reported in mAh.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

RemainingCapacity
This read-only command returns the predicted remaining capacity based on rate (per configured Load
Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

FullChargeCapacity

Address
[0x12]

Default
[0x0000]

This read-only command returns the predicted capacity of the battery at full charge based on rate (per configured Load
Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

5.3. Devices 121

MrT

Fields

FullChargeCapacity
This read-only command returns the predicted capacity of the battery at full charge based on rate
(per configured Load Select) temperature present depth-of-discharge and stored impedance. Values
are reported in mAh.

AverageCurrent

Address
[0x14]

Default
[0x0000]

This read-only function returns a signed integer value that is the average current flow through the sense resistor. The
value is updated every 1 s. Units are mA.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AverageCurrent
This read-only function returns a signed integer value that is the average current flow through the
sense resistor. The value is updated every 1 s. Units are mA.

AverageTimeToEmpty

Address
[0x16]

Default
[0x0000]

Uses average current value with a time constant of 15 s for this method. A value of 65535 means the battery is not
being discharged.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

122 Chapter 5. Modules

MrT

Fields

AverageTimeToEmpty
Uses average current value with a time constant of 15 s for this method. A value of 65535 means the
battery is not being discharged.

AverageTimeToFull

Address
[0x18]

Default
[0x0000]

This read-only function returns a unsigned integer value predicting time to reach full charge for the battery in units of
minutes based on AverageCurrent(). The computation accounts for the taper current time extension from linear TTF
computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is
not being charged.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AverageTimeToFull
This read-only function returns a unsigned integer value predicting time to reach full charge for
the battery in units of minutes based on AverageCurrent(). The computation accounts for the taper
current time extension from linear TTF computation based on a fixed AverageCurrent() rate of charge
accumulation. A value of 65535 indicates the battery is not being charged.

StandbyCurrent

Address
[0x1A]

Default
[0x0000]

This read-only function returns a signed integer value of measured standby current through the sense resistor. The
StandbyCurrent() is an adaptive measurement. Initially it will report the standby current programmed in initial standby
and after several seconds in standby mode will report the measured standby. The register value is updated every 1 s
when measured current is above the deadband and is less than or equal to 2 × initial standby. The first and last values
that meet these criteria are not averaged in since they may not be stable values. To approximate to a 1-min time constant
each new value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current and
approximate 7% of the current measured average current.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

5.3. Devices 123

MrT

Fields

StandbyCurrent
This read-only function returns a signed integer value of measured standby current through the sense
resistor. The StandbyCurrent() is an adaptive measurement. Initially it will report the standby current
programmed in initial standby and after several seconds in standby mode will report the measured
standby. The register value is updated every 1 s when measured current is above the deadband and
is less than or equal to 2 × initial standby. The first and last values that meet these criteria are not
averaged in since they may not be stable values. To approximate to a 1-min time constant each new
value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current
and approximate 7% of the current measured average current.

StandbyTimeToEmpty

Address
[0x1C]

Default
[0x0000]

This read-only function returns a unsigned integer value predicting remaining battery life at standby rate of discharge
in units of minutes. The computation uses Nominal Available Capacity (NAC) for the calculation. A value of 65535
indicates the battery is not being discharged.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

StandbyTimeToEmpty
This read-only function returns a unsigned integer value predicting remaining battery life at standby
rate of discharge in units of minutes. The computation uses Nominal Available Capacity (NAC) for
the calculation. A value of 65535 indicates the battery is not being discharged.

MaxLoadCurrent

Address
[0x1E]

Default
[0x0000]

This read-only function returns a signed integer value in units of mA of maximum load conditions. The MaxLoadCur-
rent() is an adaptive measurement which is initially reported as the maximum load current programmed in initial Max
Load Current register. If the measured current is ever greater than the initial Max Load Current then the MaxLoadCur-
rent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and initial Max
Load Current whenever the battery is charged to full after a previous discharge to an SOC of less than 50%. This will
prevent the reported value from maintaining an unusually high value.

124 Chapter 5. Modules

MrT

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

MaxLoadCurrent
This read-only function returns a signed integer value in units of mA of maximum load conditions.
The MaxLoadCurrent() is an adaptive measurement which is initially reported as the maximum load
current programmed in initial Max Load Current register. If the measured current is ever greater than
the initial Max Load Current then the MaxLoadCurrent() updates to the new current. MaxLoadCur-
rent() is reduced to the average of the previous value and initial Max Load Current whenever the
battery is charged to full after a previous discharge to an SOC of less than 50%. This will prevent the
reported value from maintaining an unusually high value.

MaxLoadTimeToEmpty

Address
[0x20]

Default
[0x0000]

This read-only function returns a unsigned integer value predicting remaining battery life at the maximum discharge
load current rate in units of minutes. A value of 65535 indicates that the battery is not being discharged.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

MaxLoadTimeToEmpty
This read-only function returns a unsigned integer value predicting remaining battery life at the max-
imum discharge load current rate in units of minutes. A value of 65535 indicates that the battery is
not being discharged.

AveragePower

Address
[0x22]

Default
[0x0000]

This read-only function returns a signed integer value of average power during battery charging and discharging. It is
negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged.
The value is reported in units of mW.

5.3. Devices 125

MrT

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AveragePower
This read-only function returns a signed integer value of average power during battery charging and
discharging. It is negative during discharge and positive during charge. A value of 0 indicates that
the battery is not being discharged. The value is reported in units of mW.

BTPDischargeSet

Address
[0x24]

Default
[0x0000]

This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the RemCap drops
below the set threshold in DF register.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

BTPDischargeSet
This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the
RemCap drops below the set threshold in DF register.

BTPChargeSet

Address
[0x26]

Default
[0x0000]

This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

126 Chapter 5. Modules

MrT

Fields

BTPChargeSet
This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.

InternalTemperature

Address
[0x28]

Default
[0x0000]

This read-only function returns an unsigned integer value of the measured internal temperature of the device in 0.1-k
units measured by the gas gauge.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

InternalTemperature
This read-only function returns an unsigned integer value of the measured internal temperature of
the device in 0.1-k units measured by the gas gauge.

CycleCount

Address
[0x2A]

Default
[0x0000]

This read-only function returns an unsigned integer value of the number of cycles the battery has experienced a discharge
(range 0 to 65535). One cycle occurs when accumulated discharge greater than or equal to CC threshold.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

5.3. Devices 127

MrT

Fields

CycleCount
This read-only function returns an unsigned integer value of the number of cycles the battery has
experienced a discharge (range 0 to 65535). One cycle occurs when accumulated discharge greater
than or equal to CC threshold.

RelativeStateOfCharge

Address
[0x2C]

Default
[0x00]

This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as
percentage of FullChargeCapacity() with a range of 0% to 100%.

Bit 7 6 5 4 3 2 1 0
Field

Fields

RelativeStateOfCharge
This read-only function returns an unsigned integer value of the predicted remaining battery capacity
expressed as percentage of FullChargeCapacity() with a range of 0% to 100%.

StateOfHealth

Address
[0x2E]

Default
[0x00]

This read-only function returns an unsigned integer value expressed as a percentage of the ratio of predicted FCC (25C
SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0% to 100% respectively.

Bit 7 6 5 4 3 2 1 0
Field

128 Chapter 5. Modules

MrT

Fields

StateOfHealth
This read-only function returns an unsigned integer value expressed as a percentage of the ratio of
predicted FCC (25C SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0%
to 100% respectively.

ChargeVoltage

Address
[0x30]

Default
[0x0000]

Returns the desired charging voltage in mV to the charger

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

ChargeVoltage
Returns the desired charging voltage in mV to the charger

ChargeCurrent

Address
[0x32]

Default
[0x0000]

Returns the desired charging current in mA to the charger

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

ChargeCurrent
Returns the desired charging current in mA to the charger

5.3. Devices 129

MrT

DesignCapacity

Address
[0x3C]

Default
[0x0000]

In SEALED and UNSEALED access This command returns the value stored in Design Capacity and is expressed in
mAh. This is intended to be a theoretical or nominal capacity of a new pack but should have no bearing on the operation
of the gas gauge functionality.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

DesignCapacity
In SEALED and UNSEALED access This command returns the value stored in Design Capacity
and is expressed in mAh. This is intended to be a theoretical or nominal capacity of a new pack but
should have no bearing on the operation of the gas gauge functionality.

AltManufacturerAccess

Address
[0x3E]

Default
[0x0000]

MAC Data block command

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

AltManufacturerAccess
MAC Data block command

130 Chapter 5. Modules

MrT

MACData

Address
[0x40]

Default
[0x0000]

MAC Data block

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

MACData
MAC Data block

SafetyAlert

Address
[0x50]

Default
[0x00000000]

This command returns the SafetyAlert flags on AltManufacturerAccess or MACData.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field UTDUTC CTOS PTOS OTDOTC ASCD ASCC AOLDOCD OCCCOVCUV

Flags

UTD
Undertemperature During Discharge

UTC
Undertemperature During Charge

CTOS
Charge Timeout Suspend

PTOS
Precharge Timeout Suspend

OTD
Overtemperature During Discharge

OTC
Overtemperature During Charge

ASCD
Short-Circuit During Discharge

5.3. Devices 131

MrT

ASCC
Short-Circuit During Charge

AOLD
Overload During Discharge

OCD
Overcurrent During Discharge

OCC
Overcurrent During Charge

COV
Cell Overvoltage

CUV
Cell Undervoltage

MACDataSum

Address
[0x60]

Default
[0x00]

MAC Data block checksum

Bit 7 6 5 4 3 2 1 0
Field

Fields

MACDataSum
MAC Data block checksum

MACDataLen

Address
[0x61]

Default
[0x00]

MAC Data block length

Bit 7 6 5 4 3 2 1 0
Field

132 Chapter 5. Modules

MrT

Fields

MACDataLen
MAC Data block length

5.3.9 Audio

wm8731

• Generated with MrT Device Utility

• Bus: I2C, SPI

• RegMap: Register Map

• Datasheet: https://statics.cirrus.c. . .

• DigiKey: WM8731CSEFL-ND

• I2C Address: 0x34

Description

Aduio codec

Register Map

Name Address Type Access Default Description
LEFT_IN 0x00 uint16 W 0x0097 Left line in control
RIGHT_IN 0x01 uint16 W 0x0097 Right line in control
LEFT_OUT 0x02 uint16 W 0x0079 Left Headphone Out control
RIGHT_OUT 0x03 uint16 W 0x0079 Right Headphone Out control
AN_PATH 0x04 uint16 W 0x000A analog audio path control
DIG_PATH 0x05 uint16 W 0x0008 Digital audio path control
POWER_DWN 0x06 uint16 W 0x009F Power Down control
DIG_IFACE 0x07 uint16 W 0x009F Digital audio interface format
SAMPLE 0x08 uint16 W 0x0000 Sampling control
ACTIVE 0x09 uint16 W 0x0000 Active Control
RESET 0x0F uint16 W 0x0FFF Reset control

Registers

LEFT_IN

Address
[0x00]

Default
[0x0097]

5.3. Devices 133

https://github.com/uprev-mrt/mrtutils/wiki/mrt-device
Regmap.html
https://statics.cirrus.com/pubs/proDatasheet/WM8731_v4.9.pdf
https://www.digikey.com/products/en?KeyWords=WM8731CSEFL-ND

MrT

Left line in control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field LRINBOTH MUTE VOLUME

Flags

MUTE
Mutes Left input

LRINBOTH
Left to Right Channel Line Input Volume and Mute Data Load Control

Fields

VOLUME
Volume control for Left input in 1.5dB steps range -34.5dB -> +12dB

Name Value Descriptions
MIN b00000 -34.5dB
0dB b10101 0db Gain
MAX b11111 +12dB
STEP b00001 1.5dB Step

RIGHT_IN

Address
[0x01]

Default
[0x0097]

Right line in control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field LRINBOTH MUTE VOLUME

Flags

MUTE
Mutes Right input

LRINBOTH
Left to Right Channel Line Input Volume and Mute Data Load Control

134 Chapter 5. Modules

MrT

Fields

VOLUME
Volume control for right input in 1.5dB steps range -34.5dB -> +12dB

Name Value Descriptions
MIN b00000 minimum -34.5dB
0dB b10101 0db Gain
MAX b11111 maximum +12dB
STEP b00001 1.5dB Step

LEFT_OUT

Address
[0x02]

Default
[0x0079]

Left Headphone Out control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

LEFT_OUT
Left Headphone Out control

RIGHT_OUT

Address
[0x03]

Default
[0x0079]

Right Headphone Out control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

5.3. Devices 135

MrT

Fields

RIGHT_OUT
Right Headphone Out control

AN_PATH

Address
[0x04]

Default
[0x000A]

analog audio path control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field SIDEATT SIDETONEDAC-

SEL
BY-
PASS

IN-
SEL

MUTEMICMIC-
BOOST

Flags

MICBOOST
Microphone Input Level Boost

MUTEMIC
Mute Mic input to ADC

INSEL
Selects input between Mic and Line-in

BYPASS
Combines Line-in signal to Output

DACSEL
DAC Select

SIDETONE
Combines Mic signal to Output

Fields

SIDEATT
Side Tone attenuation

Name Value Descriptions
6dB b00 6dB of attenuation
9dB b01 9dB of attenuation
12dB b10 12dB of attenuation
15dB b11 15dB of attenuation

136 Chapter 5. Modules

MrT

DIG_PATH

Address
[0x05]

Default
[0x0008]

Digital audio path control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field HPOR DACMU DEEMP ADCHPD

Flags

ADCHPD
ADC High Pass Filter

DACMU
DAC Soft Mute

HPOR
Store dc offset when High Pass Filter disabled

Fields

DEEMP
De-emphasis Control

Name Value Descriptions
DIS b00 Disable
32kHz b01 32 kHz
44_1kHz b10 44.1 kHz
48kHz b11 48 kHz

POWER_DWN

Address
[0x06]

Default
[0x009F]

Power Down control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field POWEROFFCLK-

OUTPD
OS-
CPD

OUTPDDACPDAD-
CPD

MICPDLINEINPD

5.3. Devices 137

MrT

Flags

LINEINPD
Line Input Power Down

MICPD
Microphone Input an Bias PowerDown

ADCPD
ADC Power Dow

DACPD
DAC Power Down

OUTPD
Powers down ALL outputs including digital

OSCPD
Oscillator Power Down

CLKOUTPD
CLKOUT power down

POWEROFF
POWEROFF mode

DIG_IFACE

Address
[0x07]

Default
[0x009F]

Digital audio interface format

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field BLCK-

INV
MAS-
TER_MODE

LR-
SWAP

LRP IWL FORMAT

Flags

BLCKINV
Inverts the bit clock

MASTER_MODE
Enables Master mode

LRSWAP
Swaps LR clock polarity

LRP
DACLRC phase control (in left, right or I2S modes)

138 Chapter 5. Modules

MrT

Fields

IWL
Word Length. Audio data size

Name Value Descriptions
32BIT b11 32 bit sample size
24BIT b10 24 bit sample size
20BIT b01 20 bit sample size
16BIT b00 16 bit sample size

FORMAT
Selects digital audio format

Name Value Descriptions
RIGHT_JUST b00 MSB-First right justified
LEFT_JUST b01 MSB-first left justified
I2S b10 I2S format. MSB-First left -1 justified
DSP b11 DSP Mode. frame sync + 2 data packed words

SAMPLE

Address
[0x08]

Default
[0x0000]

Sampling control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field

Fields

SAMPLE
Sampling control

ACTIVE

Address
[0x09]

Default
[0x0000]

5.3. Devices 139

MrT

Active Control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Enable

Flags

Enable
Enables Digital Audio interface

RESET

Address
[0x0F]

Default
[0x0FFF]

Reset control

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field RESET

Fields

RESET
Setting to 0 resets the device

5.3.10 FPGA

Spartan6

Datasheet: https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

Driver for configuring Spartan 6 FPGA using an 8 bit selectmap interface

5.3.11 RegDevice

This module provides a generic driver for accessing register based devices. It supports devices on both I2C and SPI
buses. Since most register based devices use the same access scheme, this provides a consistent base for device drivers.

140 Chapter 5. Modules

MrT

mrt-device

The recomendded method for creating device drivers based on this module,is to use the mrt-device which is part of the
mrt-utils toolset. This provides a very consistent usage of the regdev module, and also creates an easily parseable device
file as a byproduct. This can be used for better documentation as well as a basis for automated testing of hardware.

pip3 install mrtutils

Step 1: Define device:

Devices are defined with a YAML file.

To generate a blank template: .. code-block:: bash

mrt-device -t /path/to/file.yml

The descriptor file contains device information such as part numbers, links to datashees, and other relevant information.
It also contains definitions of registers and data structures on the device. The entities in the definition are:

registers

registeres are individualy addressable memory registers on the device. each register can have the folowing attributes:

addr
register address on device

type
register type, (default is uin8_t)

perm
premissions on register R for read, W for write

desc
description of register. used for code documentation

default
default value of the register

fields

fields are data fields contained in registers. They are grouped by register and they contain the following attributes:

mask
this specifies the mask for the field. This is used to mask and shift data to match the field.

vals
this is a list of possible values and their descriptions for the field.

Note: If a field is defined with a single bit mask, and no values, it is interpretted as a ‘flag’. Flag fields have macros
generated for setting, clearing, and checking them.

Then fill out the template. example from `hts221 driver <https://github.com/uprev-mrt/device-hts221`_ :

5.3. Devices 141

MrT

name: HTS221
description: Humidity and Temperature Sensor
category: Device
requires: [RegDevice,Platform]
datasheet: https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/
→˓ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.
→˓DM00116291.pdf
mfr: STMicroelectronics
mfr_pn: HTS221TR
digikey_pn: 497-15382-1-ND

prefix: HTS
bus: I2C
i2c_addr: 0xBE

registers:
- WHO_AM_I: { addr: 0x0F , type: uint8_t, perm: R, desc: Id Register, default: 0xBC}
- AV_CONF: { addr: 0x10 , type: uint8_t, perm: RW, desc: Humidity and temperature␣
→˓resolution mode}
- CTRL1: { addr: 0x20 , type: uint8_t, perm: RW, desc: Control register 1}
- CTRL2: { addr: 0x21 , type: uint8_t, perm: RW, desc: Control register 2}
- CTRL3: { addr: 0x22 , type: uint8_t, perm: RW, desc: Control register 3}
- STATUS: { addr: 0x27 , type: uint8_t, perm: R, desc: Status register}
- HUMIDITY_OUT: { addr: 0x28 , type: int16_t, perm: R, desc: Relative humidity data }
- TEMP_OUT: { addr: 0x2A , type: int16_t, perm: R, desc: Temperature data}

- H0_rH_x2: { addr: 0x30 , type: uint8_t, perm: R, desc: Calibration data}
- H1_rH_x2: { addr: 0x31 , type: uint8_t, perm: R, desc: Calibration data}
- T0_DEGC_x8: { addr: 0x32 , type: uint8_t, perm: R, desc: Calibration data}
- T1_DEGC_x8: { addr: 0x33 , type: uint8_t, perm: R, desc: Calibration data}
- T1T0_MSB: { addr: 0x35 , type: uint8_t, perm: R, desc: Calibration data}
- H0_T0_OUT: { addr: 0x36 , type: int16_t, perm: R, desc: Calibration data}
- H1_T0_OUT: { addr: 0x3A , type: int16_t, perm: R, desc: Calibration data}
- T0_OUT: { addr: 0x3C , type: int16_t, perm: R, desc: Calibration data}
- T1_OUT: { addr: 0x3E , type: int16_t, perm: R, desc: Calibration data}

fields:
- STATUS:

- TEMP_READY: { mask: 0x01, desc: indicates that a temperature reading is ready }
- HUM_READY: { mask: 0x02, desc: indicates that a humidity reading is ready }

- CTRL1:
- ODR:

mask: 0x07
vals:
- ONESHOT: { val: 0, desc: readings must be requested}
- 1HZ: { val: 1, desc: 1 hz sampling}
- 7HZ: { val: 2, desc: 7 hz sampling}
- 12_5HZ: { val: 3, desc: 12.5 hz sampling}

142 Chapter 5. Modules

MrT

Step 2: generate the code

To generate the code, use mrt-device and specify an input and an output path:

mrt-device -i device.yaml -o .

The tool will generate 3 files (using hts221 as an example):

hts221.h
header file for driver

hts221.c
Source file for driver

hts221_dev.h
Macros generated from device file. this contains macros for addresses, values, masks, and functions
for accessing fields/flags in registers.

Step 3: customize

This will provide a good base with access to all of the register. To add more functionality you can add to the code. If
you want to ability to modify the device file further, keep your code inside of the ‘user code’ blocks provided:

/*user-block-init-start*/
/*user-block-init-end*/

If the device does not follow the normal register access schemes, you can specify your own, and redirect the
mrt_regdev_t fRead and fWrite function pointers to them.

/**
*@brief writes buffer to address of device
*@param dev ptr to generic register device
*@param addr address in memory to write
*@param data ptr to data to be written
*param len length of data to write
*@return status (type defined by platform)
*/
mrt_status_t my_write_function(mrt_regdev_t* dev, uint32_t addr, uint8_t* data,int len);

static mrt_status_t hts_init(hts221_t* dev)
{

/*user-block-init-start*/
dev->mRegDev.fWrite = my_write_function;
/*user-block-init-end*/
return MRT_STATUS_OK;

}

5.3. Devices 143

https://github.com/uprev-mrt/device-hts221

MrT

144 Chapter 5. Modules

CHAPTER

SIX

ARCHITECTURE

At its core MrT is just a git repository that contains a bunch of reusable submodules. mrt-config is just a tool that lets
you browse submodules from that repo remotely, and add them to your own repo.

145

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-config.html

MrT

146 Chapter 6. Architecture

MrT

6.1 Custom Remotes

By default mrt-config will use UpRev-MrT as the remote repo, but you can actually use any remote repo using the -r
option. This allows users to maintain custom sets of modules and private repos.

It works by parsing the .gitmodules file, so it will work with any repo that has submodules, there are no special files
required.

6.2 mrt.yml files

Even though the tool will work on repos without any special files, mrt.yml files can extend the functionality. If you
run the mrt-doc tool in the root of a repo, it will check all of the submodule paths in that repo for mrt.yml files and
combine them into a root mrt.yml file. The main use for this is to gather all of the requirements for the submodules,
so when you select one in the mrt-config tool, it can automatically select the dependencies.

6.1. Custom Remotes 147

https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-config.html
https://gitlab.com/uprev/public/mrt/MrT-Meta
https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-doc.html

MrT

148 Chapter 6. Architecture

CHAPTER

SEVEN

ADDING MODULES

This section covers the information needed for contributors to add modules to the framework

7.1 Creating a Module

mrt-config works by grabbing the list of submodules in the main uprev-mrt repo . When you import a module into
your project, it adds that submodule to your project using the same relative path it has in the main repo.

So to add a module, you need to create a repo for the module, and then add it as a submodule to the uprev-mrt repo.

Note: Repo names for modules should be all lowercase and hyphenated with the module category as a prefix. example:
the Fifo module’s repo is utility-fifo

mrt.yml file
Every module should contain an mrt.yml file with a name, description, category, and requires field

example from Fifo module:

name: fifo
description: generic fifo utility
category: utility
requires: []

Once you have the basic module added, you can begin adding code. The modules structure will vary based on what
type of module it is. See below for specifics when adding a Platform , Device , or Utility module

7.2 Platform Modules

Platform modules are meants to abstract any IO operations. This can normally be done by typdefing native platform
types to the mrt_xx_t equivalent, and using a macro to pass through operation. In some cases, you may have to get a
little creative to make it work, but the macros make the system pretty flexible.

When adding a platform, the header and symbol must be added to Platforms/Common/mrt_platform.h

example from Platforms/Common/mrt_platform.h

149

https://gitlab.com/uprev/public/mrt/MrT-Meta
https://gitlab.com/uprev/public/mrt/MrT-Meta

MrT

...

#if MRT_PLATFORM == MRT_STM32_HAL
#include "Platforms/STM32/stm32_hal_abstract.h"
#define MRT_PLATFORM_STRING "STM32_HAL"
#include "platform_check.h"

#endif

...

Then in the header for the module, you can abstract the various IO operations.

7.2.1 Delay Abstraction

• MRT_DELAY_MS(ms)

7.2.2 Uart Abstraction

• typedef xx mrt_uart_handle_t;

• MRT_UART_TX(handle, data, len, timeout)

• MRT_UART_RX(handle, data, len, timeout)

7.2.3 GPIO Abstraction

• typedef xx mrt_gpio_t

• MRT_GPIO_WRITE(pin,val)

• MRT_GPIO_READ(pin)

• MRT_GPIO_PORT_WRITE(port, mask, val)

• MRT_GPIO_PORT_READ(port)

7.2.4 I2C Abstraction

• typedef xx mrt_i2c_handle_t

• MRT_I2C_MASTER_TRANSMIT(handle ,addr,data,len, stop, timeout)

• MRT_I2C_MASTER_RECEIVE(handle ,addr, data, len, stop, timeout)

• MRT_I2C_MEM_WRITE(handle, addr, mem_addr, mem_size, data, len, timeout)

• MRT_I2C_MEM_READ(handle, addr, mem_addr, mem_size, data, len, timeout)

150 Chapter 7. Adding Modules

MrT

7.2.5 SPI Abstraction

• typedef xx mrt_spi_handle_t

• MRT_SPI_TRANSFER(handle ,tx, rx ,len, timeout)

• MRT_SPI_TRANSMIT(handle, tx, len, timeout)

• MRT_SPI_RECIEVE(handle, tx, len, timeout)

7.2.6 Mutex Abstraction

• MRT_MUTEX_TYPE

• MRT_MUTEX_CREATE(m)

• MRT_MUTEX_LOCK(m)

• MRT_MUTEX_UNLOCK(m)

• MRT_MUTEX_DELETE(m)

7.2.7 printf

• MRT_PRINTF(f_, . . .)

Note: Not every function has to be used. Any undefined functions will be defined as NOP() and a warning will be
displayed at compile time to let the user know the function is not available on the platform.

7.2.8 Example from Platforms/Atmel

...

//Delay Abstraction
#define MRT_DELAY_MS(ms) delay_ms(ms)

//Uart Abstraction
typedef struct io_descriptor* mrt_uart_handle_t;
#define MRT_UART_TX(handle, data, len, timeout) io_write(handle, data, len)
#define MRT_UART_RX(handle, data, len, timeout) io_read(handle, data, len)

//GPIO Abstraction
typedef uint8_t mrt_gpio_t;
typedef enum gpio_port mrt_gpio_port_t;
#define MRT_GPIO_WRITE(pin,val) gpio_set_pin_level(pin,val)
#define MRT_GPIO_READ(pin) gpio_get_pin_level(pin)
#define MRT_GPIO_PORT_WRITE(port, mask, val) gpio_set_port_level(port, mask, val)
#define MRT_GPIO_PORT_READ(port) gpio_get_port_level(port)

//printf
#define MRT_PRINTF(f_, ...) printf((f_), __VA_ARGS__)

...

7.2. Platform Modules 151

MrT

7.3 Device Modules

Devices are the most commonly added module type, because every project has unique hardware. The main thing to
keep in mind with a Device module, is that all of the IO operations must go through an abstracted platform function.
This means you can not use any native IO calls. For instance all GPIO writes must use MRT_GPIO_WRITE(), and all
UART transmits must use MRT_UART_TX() etc.

The mrtutils package contains a tool called mrt-device that can be used to create device drivers for register based
devices.

7.4 Utility Modules

Utilities are the easiest modules to add, because they do not have to interact with hardware. Because these modules
can be run on any system, they are all required to have a unit test with 80% code coverage.

152 Chapter 7. Adding Modules

CHAPTER

EIGHT

CODING PRACTICES

All of the modules should be written in pure C since the goal is to be reusable across many embedded platforms.

8.1 Documentation

All Modules should include a ‘README.rst’ file in the root of the modules directory. The README files are au-
tomatically combined and updated in the Reference section of this page. If the documentation contains references to
other pages or images, they must be in a subdirectory named ‘doc’.

Note: README.md files are also supported, but rst is preferred

8.2 Code Comments

All public functions should be documented using doxygen style comments:

/**
*@brief Draws a bitmap to the buffer
*@param gfx ptr to mono_gfx_t descriptor
*@param x x coord to begin drawing at
*@param y y coord to begin drawing at
*@param bmp bitmap to draw
*@param val pixel value on
*@return status of operation
*/
mrt_status_t mono_gfx_draw_bmp(mono_gfx_t* gfx, int x, int y,const GFXBmp* bmp, uint8_t␣
→˓val);

153

MrT

8.3 Unit Tests

The Unit Tester for MrT recursively searches the modules for any file ending with ‘_UT.cpp’, and adds them to the
GTest project. To add a Unit test to a module just add a file that ends with _UT.cpp.

Note: To keep projects from trying to compile the Unit test files, they are wrapped with #ifdef
UNIT_TESTING_ENABLED .. #endif //UNIT_TESTING_ENABLED

8.4 Pull Requests

Because modules are typically developed as part of a seperate project, Pull Requests for the module should be reviewed
along with the code for that project. There currently is not support for this on Bitbucket Cloud, but I am looking into a
solution for this.

154 Chapter 8. Coding Practices

CHAPTER

NINE

MRT FRAMEWORK

Modular Reusability and Testing Framework

MrT is a collection of reusable modules that can be easily integrated into new projects. Each module is designed and
maintained according to guidelines and standards to keep consistency. This allows uniform implementation, documen-
tation and testing.

9.1 Modules

There are three types of modules in the MrT framework Platforms, Devices, and Utilities

9.1.1 Platforms

Platforms are abstractions for specific platforms. This could be an OS or an MCU family. Each platform contains
abstracted interfaces such as GPIO, Uart, SPI, and I2C. This allows the device modules to have a common interface
for all platforms. When using a platform module, check the Readme for the module for the integrations steps specific
to that platform. Normally these are just the steps to include the Modules directory in the projects include path, and
define the MRT_PLATFORM symbol

9.1.2 Devices

Devices are modules for supporting commonly used ICs in projects. This would include common sensors, flash/eeprom
memory, displays, battery charge controllers, etc.

Device modules contain all the logic needed for their operation and communicate using abstracted interfaces from
platform modules

9.1.3 Utilities

Utilities are modules that provide a common functionality with no need for abstraction i.e., they do not depend on any
specific hardware or platform. These include Fifos, Hashing functions, encoders/decoders, and messaging protocols.
Because these do not rely on any hardware, they can be used without a Platform module

155

	Getting Started
	Installation
	Integrating MrT into your project

	Tutorial
	Step 1: Installing tools
	Step 2: Add MrT Modules
	Step 3: Toggle LED
	Step 4: Create a device driver
	Step 5: Create a PolyPacket Service
	Step 6: Customize the service
	Step 7: Interact with poly-packet

	mrtutils
	mrt-config
	mrt-device
	Step 1: Define device:
	Header Properties
	Registers
	Fields
	Configs

	Step 2: generate the code
	Step 3: customize

	mrt-ble
	Step 1: Define the profile
	Header Properties
	Services
	Characteristics
	Example File

	Step 2: Generate Code
	Step 3: Integrating Code
	Live ICD

	mrt-version
	Creating the header file
	Supported File Types
	Updating the Version
	Auto

	Build System/Webhook integration
	Future Improvements

	mrt-doc
	mrt-gen
	Code Templates
	Creating Sphinx documentation
	MrT Module Template

	Tools

	PolyPacket
	Installation
	Step 1: Defining a Protocol
	Descriptor File
	Fields
	Packets
	Val
	Struct
	Example Protocol
	Agents
	Plugins:

	Step 2: Generating the Code
	Step 3a: Using The Code C/C++
	Initializing service
	Register Tx functions
	Feed the service
	Sending messages
	Receive Handlers
	Process

	Step 3b: Using The Code JSON
	Handling JSON packets
	Async JSON
	Sync JSON

	PolyPacket CLI Tool

	Modules
	Platforms
	Platform-NRF5
	Setting the Platform

	Linux
	ESP32
	STM32
	Troubleshooting common problems
	main.h no such file

	Using ACI BLE
	Enabling printf

	Atmel
	Common
	FreeRTOS

	Utilities
	GFX
	ColorGfx

	Audio
	utility-audio-test
	utility-AudioXcoder

	Interfaces
	Gatt Interface

	OTA
	OTA Image Manager
	Initializing Staging disk
	Staging an OTA Update image
	Applying the Update

	OTA XFer
	PolyPacket Protocol
	Generating protocol service
	Pushing Images to device

	CRC
	Use
	Single Chunk
	Multiple Chunks

	ByteFifo
	COBS
	cobs.c/cobs.h
	cobs_fifo.c / cobs_fifo.h
	Working with frames
	Working with Raw Bytes

	PolyPacket
	Packing
	Header
	Field Block
	varSize

	Fifo

	Devices
	Memory
	FL-S Series NOR Flash Memory
	SpiFlash

	Displays
	ST727A
	Device Driver for SSD1306 based oled displays
	ERCxxLcd
	Tri-Color E-ink display

	IO
	opex
	Description
	Updating Registers
	Usage
	Configure GPIO
	Set GPIO
	Configure IRQ

	Register Map
	Registers
	GPIO_IN
	GPIO_OUT
	GPIO_DDR
	IRQ_SRC
	Fields

	ADC_n_VAL
	PWM_n_VAL
	GPIO_n_CFG
	Flags
	Fields

	IRQ_CFG
	Flags
	Fields

	ADC_n_CFG
	Flags
	Fields

	PWM_CONFIG
	Flags
	Fields

	WHO_AM_I
	Fields

	VERSION
	Fields

	EEPROM_MEM

	MotorDrivers
	STSPIN220
	Description
	Register Map
	Registers

	Biometric
	ANV401 Fingerprint Sensor
	Example Code

	Sensors
	sht31
	Description
	Register Map
	Registers

	LIS2DH12
	Description
	Register Map
	Registers
	STATUS_AUX
	OUT_TEMP
	WHO_AM_I
	Fields

	CTRL0
	Fields

	TEMP_CFG
	Fields

	CTRL1
	Flags
	Fields

	CTRL2
	Flags

	CTRL3
	Fields

	CTRL4
	Fields

	CTRL5
	Fields

	CTRL6
	Fields

	REFERENCE
	Fields

	STATUS
	OUT_X
	OUT_Y
	OUT_Z
	FIFO_CTRL
	Fields

	FIFO_SRC
	INT1_CFG
	Fields

	INT1_SRC
	INT1_THS
	Fields

	INT1_DURATION
	Fields

	INT2_CFG
	Fields

	INT2_SRC
	INT2_THS
	Fields

	INT2_DURATION
	Fields

	CLICK_CFG
	Fields

	CLICK_SRC
	CLICK_THS
	Fields

	TIME_LIMIT
	Fields

	TIME_LATENCY
	Fields

	TIME_WINDOW
	Fields

	ACT_THS
	Fields

	ACT_DUR
	Fields

	HTS221
	Description
	Register Map
	Registers
	WHO_AM_I
	Fields

	AV_CONF
	Fields

	CTRL1
	Flags
	Fields

	CTRL2
	Flags

	CTRL3
	Fields

	STATUS
	Flags

	HUMIDITY_OUT
	Fields

	TEMP_OUT
	Fields

	H0_rH_x2
	H1_rH_x2
	T0_DEGC_x8
	T1_DEGC_x8
	T1T0_MSB
	H0_T0_OUT
	H1_T0_OUT
	T0_OUT
	T1_OUT

	Device-LSM6D

	RF
	device-nrf24

	Power
	README
	What is this repository for?
	How do I get set up?
	Contribution guidelines
	Who do I talk to?

	stc3117
	Description
	Register Map
	Registers
	MODE
	Flags

	CTRL
	SOC
	Fields

	COUNTER
	Fields

	CURRENT
	Fields

	VOLTAGE
	Fields

	TEMPERATURE
	Fields

	AVG_CURRENT
	Fields

	OCV
	Fields

	CC_CNF
	Fields

	VM_CNF
	Fields

	ALARM_SOC
	Fields

	ALARM_VOLTAGE
	Fields

	CURRENT_THRES
	Fields

	CMONIT_COUNT
	Fields

	CMONIT_MAX
	Fields

	ID
	Fields

	CC_ADJ
	Fields

	VM_ADJ
	Fields

	BQ28Z
	Description
	Register Map
	Registers
	DUMMY
	Flags
	Fields

	ManufacturerAccess_ControlStatus
	Flags
	Fields

	AtRate
	Fields

	AtRateTimeToEmpty
	Fields

	Temperature
	Fields

	Voltage
	Fields

	BatteryStatus
	Flags
	Fields

	Current
	Fields

	MaxError
	Fields

	RemainingCapacity
	Fields

	FullChargeCapacity
	Fields

	AverageCurrent
	Fields

	AverageTimeToEmpty
	Fields

	AverageTimeToFull
	Fields

	StandbyCurrent
	Fields

	StandbyTimeToEmpty
	Fields

	MaxLoadCurrent
	Fields

	MaxLoadTimeToEmpty
	Fields

	AveragePower
	Fields

	BTPDischargeSet
	Fields

	BTPChargeSet
	Fields

	InternalTemperature
	Fields

	CycleCount
	Fields

	RelativeStateOfCharge
	Fields

	StateOfHealth
	Fields

	ChargeVoltage
	Fields

	ChargeCurrent
	Fields

	DesignCapacity
	Fields

	AltManufacturerAccess
	Fields

	MACData
	Fields

	SafetyAlert
	Flags

	MACDataSum
	Fields

	MACDataLen
	Fields

	Audio
	wm8731
	Description
	Register Map
	Registers
	LEFT_IN
	Flags
	Fields

	RIGHT_IN
	Flags
	Fields

	LEFT_OUT
	Fields

	RIGHT_OUT
	Fields

	AN_PATH
	Flags
	Fields

	DIG_PATH
	Flags
	Fields

	POWER_DWN
	Flags

	DIG_IFACE
	Flags
	Fields

	SAMPLE
	Fields

	ACTIVE
	Flags

	RESET
	Fields

	FPGA
	Spartan6

	RegDevice
	mrt-device
	Step 1: Define device:
	registers
	fields

	Step 2: generate the code
	Step 3: customize

	Architecture
	Custom Remotes
	mrt.yml files

	Adding Modules
	Creating a Module
	Platform Modules
	Delay Abstraction
	Uart Abstraction
	GPIO Abstraction
	I2C Abstraction
	SPI Abstraction
	Mutex Abstraction
	printf
	Example from Platforms/Atmel

	Device Modules
	Utility Modules

	Coding Practices
	Documentation
	Code Comments
	Unit Tests
	Pull Requests

	MrT Framework
	Modules
	Platforms
	Devices
	Utilities

