

Home

MrT Framework

M​odular R​eusability and T​esting Framework

MrT is a collection of reusable modules that can be easily integrated into new projects. Each module is designed and maintained according to guidelines and standards to keep consistency. This allows uniform implementation, documentation and testing.

Modules

There are three types of modules in the MrT framework Platforms, Devices, and Utilities

Platforms

Platforms are abstractions for specific platforms. This could be an OS or an MCU family. Each platform contains abstracted interfaces such as GPIO, Uart, SPI, and I2C. This allows the device modules to have a common interface for all platforms. When using a platform module, check the Readme for the module for the integrations steps specific to that platform. Normally these are just the steps to include the Modules directory in the projects include path, and define the MRT_PLATFORM symbol

Devices

Devices are modules for supporting commonly used ICs in projects. This would include common sensors, flash/eeprom memory, displays, battery charge controllers, etc.

Device modules contain all the logic needed for their operation and communicate using abstracted interfaces from platform modules

Utilities

Utilities are modules that provide a common functionality with no need for abstraction i.e., they do not depend on any specific hardware or platform. These include Fifos, Hashing functions, encoders/decoders, and messaging protocols. Because these do not rely on any hardware, they can be used without a Platform module

Getting Started

This section of the document gives a basic overview of installing and using the modules

Installation

The code modules themselves are imported as submodules, so there are no libraries that need to be installed. But there is a toolset mrtutils which makes it easier to manage the modules.

pip install mrtutils

Integrating MrT into your project

cd <path/to/project>

mrt-config <relative/path/for/MrT/root>

Note

If no path is provided, it will default to ./MrT and create the directory if it does not exist

This will open the mrt-config tool which allows you to select which modules you would like to integrate into your project. The UI is based on menuconfig to be as flexible as possible in terms of where you can run it, ie in containers or remote development environments over ssh.

[image: ../_images/mrt-config.png]

Note

MrT Modules are added as git sub-modules, if you are in a directory that does not contain a git repo, it will initialize one.

mrt-config-gui

If you prefer to use a gui interface, you can use the pyQt5 based mrt-config-gui:

mrt-config-gui <relative/path/for/MrT/root>

[image: ../_images/mrt-config-gui.png]

Tutorial

This is a guide for incorporating MrT modules into a project. The guides walks through the full implementation of a project using MrT, a generated device driver, and a custom messaging protocol. This guide will be broken up into stages.

The project files are all in the mrt-tutorial repo [https://mrt.readthedocs.io/en/latest/pages/tutorial/tutorial.html] and there is a ‘reference’ branch with Tags showing the end of each stage

At head of the master branch is the project start. An STM32 project has already been created to target the STM32L4 (Their IOT node dev board)

	Uart1: 115200 baud

	I2C2

	GPIO PB14 as output, labeled as LED_GRN

Note

The setup for this project is not in the scope of this tutorial, but using STM32CUBE is pretty well documented online

Steps

	Step 1: Installing tools

	Step 2: Add MrT Modules

	Step 3: Toggle LED

	Step 4: Create a device driver

	Step 5: Create a PolyPacket Service

	Step 6: Customize the service

	Step 7: Interact with poly-packet

Step 1: Installing tools

MrT modules are just individual git repositories that get included in your project as submodules [https://git-scm.com/book/en/v2/Git-Tools-Submodules] . You could simply add them as submodules manually, but this would require looking up the urls, and making sure the path to each module is correct, because some modules reference others.

To make this easier, you can use the mrt-config tool from the mrttutils [https://mrt.readthedocs.io/en/latest/index.html] package.

mrttutils [https://mrt.readthedocs.io/en/latest/index.html] is a python package managed with pip

pip3 install mrtutils

Step 2: Add MrT Modules

Once you have installed mrtutils, adding modules is very simple. just run mrt-config and tell it where you want to put the modules (It will create the directory)

cd /path/to/mrt-tutorial
mrt-config MrT

This will open the mrt-config gui:

[image: ../../_images/mrt-config.png]
This tool will open a menuconfig style UI that lets you browse the available modules and select the ones you want to include

For Now select the following modules:

	Platforms/STM32:

	this is the absctraction layer for STM32 MCUs. it provides definitions/Macros to map hardware interaction with the STM32 HAL

	Platforms/Common:

	this module is required when using any platform abstraction layer

	Devices/RegDevice:

	This is the base module for generic register based devices. It is needed later in [Creating Device Driver using mrt-device tool](#mrt-device)

Once you have selected the required modules, press q to quite, then y when prompted to save changes

You should now have a folder called ‘MrT’ in your projects directory with the submodules inside of it.

Now you need to configure the project to use these submodules. Each platform module should have instructions in its README.

Here are the instructions from STM32/README.md [https://gitlab.com/uprev/public/mrt/modules/Platforms/STM32/-/blob/master/README.rst] :

Note

after importing modules, right click the project and hit refresh so it sees the new directories

To use the STM32 platform, cofigure the following settings:

Project->Properties->C/C++ General->Path and Symbols :
* Under the Symbols tab add a symbol named MRT_PLATFORM with the value MRT_STM32_HAL*
* Under the Source Location tab click add and select the Modules directory under Mr T*
* Under the Includes tab, click add and add the path to the Modules directory under Mr T

Build the project

Step 3: Toggle LED

Now we can use the MrT abstraction layer for stm32. We are going to blink the LED on the board just as a basic example. Add the following code snippets:

main.c:26 (in the USER CODE INCLUDES section)

#include "Platforms/Common/mrt_platform.h" /* This will include the stm32 layer based on the MRT_PLATFORM symbol we set*/

main.c:108 (in the USER CODE WHILE section)

/** STM32 HAL does not have a type for pins, all of its functions use (port,pin). MRT_GPIO() is a macro that wraps them
 * This is so that device drivers have a single struct for pins
 */
MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),HIGH); //set the pin high
MRT_DELAY_MS(1000); //wait 1000 ms
MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),LOW); //set the pin low
MRT_DELAY_MS(1000); //wait 1000 ms

Now build and run the project, the green LED on the board should blink!

 Step 4: Create a device driver

Step 4: Create a device driver

Obviously an abstraction layer to toggle a gpio is a bit overkill. But the point of this is to write device drivers that can run on any platform. So now we are going to create a device driver for the HTS221 temperature and humidity sensor on the board.

For this we will use the mrt-device tool [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html]

This is part of mrtutils, so it is already installed.

Normally you would create a device driver as a submodule, so that it can be re-used as a MrT module, but for the purpose of this tutorial we will just create it in a subdirectory. mrt-device can generate a template to get you started:

mkdir MrT/Modules/Devices/hts221
cd MrT/Modules/Devices/hts221
mrt-device -t my_device

now you should have a new file ‘my_device.yml’ to fill out. in the ‘doc’ folder there are 2 files to looks at:

	device.yml - this is the yaml file for the device driver that I already created

	hts221.pdf - this is the section of the datasheet that describes the registers.

Comparing the two files and referencing the mrt-device wiki [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html] should help you get an idea of how to structure the file. (A lot of the information at the top is not really needed, but good for documentation)

Once you feel comfortable with the structure, generate the driver:

mrt-device -i my_device.yml -o .

This will create 3 new files:

	hts221.h - header for driver

	hts221.c - source for driver

	hts221_regs.h - various symbols and macros for device registers

adding the -d flag will generate documentation:

mrt-device -i my_device.yml -o . -d .

Now we have a basic driver with access to all of the register/fields in the device. If the temperature and humidity values could be read directly, wed be done.. But they cant. So we just need to add the logic.

This particular device has a pretty convoluted calibration table that has to be read to get conversion constants. You can ignore the logic involved, the take away is that there are code blocks in the driver that will not be overwritten if you regenerate the driver. It also shows use of the devices macros for reading fields/registers

First we are going to add some properties to the device struct:

hts221.h:85 between the user-block-struct tags :

 int mPrevTemp;
 int mPrevHum;

 struct{
 int16_t T0_out;
 int16_t T1_out;
 int16_t T0_degC;
 int16_t T1_degC;
 uint8_t H0_rH;
 uint8_t H1_rH;
 int16_t H0_T0_OUT;
 int16_t H1_T0_OUT;
 } mCalData;

Next add functions for reading temperature and humidity :

hts221.h:100 between the user-block-bottom tags :

/**
 * @brief reads humidity from device
 * @param dev ptr to hts221 device
 * @return relative humidity in 1/100th of a percent. i.e. 4520 = %45.2
 */
int hts_read_humidity(hts221_t* dev);

/**
 * @brief reads temperature from device
 * @param dev ptr to hts221 device
 * @return temperature in 1/100th of a degress C. i.e. 2312 = 23.12 C
 */
int hts_read_temp(hts221_t* dev);

Add the code to get calibration constants from calibration table :

hts221.c:40 in the user-block-init section :

 dev->mPrevHum =0;
 dev->mPrevTemp =0;

 /* device requires a bit ORd with register address to auto increment reg addr */
 dev->mRegDev.mAutoIncrement = true;
 dev->mRegDev.mAiMask = 0x80;

 /* Load calibration data */
 uint8_t H0_rh_x2, H1_rh_x2, T0_degC_x8, T1_degC_x8, T1T0_msb;

 /* These registers can be read directly into the cal values */
 dev->mCalData.H0_T0_OUT = hts_read_reg(dev, &dev->mH0T0Out);
 dev->mCalData.H1_T0_OUT = hts_read_reg(dev, &dev->mH1T0Out);
 dev->mCalData.T0_out = hts_read_reg(dev, &dev->mT0Out);
 dev->mCalData.T1_out = hts_read_reg(dev, &dev->mT1Out);

 /* These registers need to be processed to get the values we need */
 H0_rh_x2 = hts_read_reg(dev, &dev->mH0RhX2);
 H1_rh_x2 = hts_read_reg(dev, &dev->mH1RhX2);
 T0_degC_x8 = hts_read_reg(dev, &dev->mT0DegcX8);
 T1_degC_x8 = hts_read_reg(dev, &dev->mT1DegcX8);
 T1T0_msb = hts_read_reg(dev, &dev->mT1t0Msb);

 /* These values just need to be divided down (for some reason they are stored with a multiplier of 2..) */
 dev->mCalData.H0_rH = H0_rh_x2 >> 1;
 dev->mCalData.H1_rH = H1_rh_x2 >> 1;

 /* T0 and T1 are 10 bits, the MSBs are stored together in the T1T0_MSB Register. They have to be put together, and then divided by 8.. (see link to application note) */
 dev->mCalData.T0_degC = ((uint16_t) T0_degC_x8 | (((uint16_t)(T1T0_msb & 0x03)) << 8)) >> 3;
 dev->mCalData.T1_degC = ((uint16_t) T1_degC_x8 | (((uint16_t)(T1T0_msb & 0x0C)) << 6)) >> 3;

The driver is generated with a ‘test’ function. we will add the logic to test the devices connection:

hts221.c:97 in the user-block-test section :

 if(hts_read_reg(dev, &dev->mWhoAmI) == HTS_WHO_AM_I_DEFAULT)
 {
 return MRT_STATUS_OK;
 }

Finally add the code for the temperature and humidity functions:

hts221.c:108 in the user-block-bottom section :

int hts_read_humidity(hts221_t* dev)
{
 int16_t raw_adc;
 float tmp_f;

 //check to make sure data is ready, if not just use previous value
 if(! hts_check_flag(dev,&dev->mStatus, HTS_STATUS_HUM_READY))
 {
 return dev->mPrevHum;
 }

 //get raw adc value
 raw_adc = hts_read_reg(dev, &dev->mHumidityOut);

 //Use calibration coefs to interpolate data to RH%
 tmp_f = ((float)(raw_adc - dev->mCalData.H0_T0_OUT) * (float)(dev->mCalData.H1_rH - dev->mCalData.H0_rH) / (float)(dev->mCalData.H1_T0_OUT - dev->mCalData.H0_T0_OUT)) + dev->mCalData.H0_rH;

 dev->mPrevHum = tmp_f * 100;
 return dev->mPrevHum;
}

int hts_read_temp(hts221_t* dev)
{
 int16_t raw_adc;
 float tmp_f;

 //check to make sure data is ready, if not just use previous value
 if(! hts_check_flag(dev,&dev->mStatus, HTS_STATUS_TEMP_READY))
 {
 return dev->mPrevTemp;
 }

 //get raw adc value
 raw_adc = hts_read_reg(dev, &dev->mTempOut);

 //Use calibration coefs to interpolate data to deg C
 tmp_f = ((float)(raw_adc - dev->mCalData.T0_out) * (float)(dev->mCalData.T1_degC - dev->mCalData.T0_degC) / (float)(dev->mCalData.T1_out - dev->mCalData.T0_out)) + dev->mCalData.T0_degC;

 dev->mPrevTemp = tmp_f * 100;
 return dev->mPrevTemp;
}

Now lets try out our driver:

main.c:27 USER CODE includes section

#include "Devices/hts221/hts221.h"

main.c:95 USER CODE 2 section

 uint32_t ticks =0;
 int temperature;
 int humidity;
 hts221_t hts; /* create instance of hts221 device*/
 hts_init_i2c(&hts, &hi2c2); /* Initialize it on I2C2 bus*/

 if(hts_test(&hts) == MRT_STATUS_OK) /* Turn on LED if device passes test */
 {
 MRT_GPIO_WRITE(MRT_GPIO(LED_GRN),HIGH);
 }

 /* Set flags/fields for start up and 1hz data*/

 hts_set_flag(&hts, &hts.mCtrl1, HTS_CTRL1_PD); /* set PD flag of CTRL 1 register, to turn on device*/
 hts_set_ctrl1_odr(&hts, HTS_CTRL1_ODR_1HZ); /* Set ODR field in CTRL1 Register to 1Hz*/

 /* OR we could use the configuration we created with: HTS_LOAD_CONFIG_AUTO_1HZ(&hts) */

main.c:122 Replace entire while loop:

/* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
 {

 /* Every 500 ms see if new data is ready, and read it */
 MRT_EVERY(50, ticks) /* convenience macro for systick timing*/
 {
 if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_READY))) /*wait until both flags are set */
 {
 temperature = hts_read_temp(&hts);
 humidity = hts_read_humidity(&hts);
 }
 }
 ticks++;
 MRT_DELAY_MS(10);

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 }

build the project and run it. The led should turn on to show it passed the device test. If you step through code you will see valid temperature/humidity readings.

 Step 5: Create a PolyPacket Service

Step 5: Create a PolyPacket Service

Now That we have a working device driver, lets create a messaging protocol so we can ask the device for data over the com port.

first we will need to add in some more MrT modules to support polypacket. back out to your projects root directory and open mrt-config again:

cd /path/to/project/root
mrt-config MrT

Select the following modules to import :

	Utilities/PolyPacket

	Utilities/JSON

	Utilities/COBS

Once they are imported, create your protocol template:

poly-make -t my_protocol

There should now be a file named my_protocol.yml in the root of your project. You can keep this wherever you want, but I find it handy to have it in the root of the project when debugging.

now modify the file to match the my_protocol.yml in the doc folder. For a detailed eplanation of the document reference PolyPacket.wiki/Defining-a-protocol [https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html#step-1-defining-a-protocol]

Once the descriptor is filled out, create a directory for your service, and then generate your service with an application layer:

mkdir MrT/Modules/my_service
poly-make -i my_protocol.yml -a -o MrT/Modules/my_service/

Add “-d doc “ to create an ICD in the doc folder

This will generate 4 files:

	my_protocolService.h - header for service, you should never need to edit this

	my_protocolService.c - source for service, you should never need to edit this

	app_my_protocol.h - header for application layer

	app_my_protocol.c - source for application layer, this is where you will fill out packet handlers

First include the service:

main.c:28:

#include "my_service/app_my_protocol.h"

Next intialize the app layer

main.c:118:

 /* OR we could use the configuration we created with: HTS_LOAD_CONFIG_AUTO_1HZ(&hts) */

 app_my_protocol_init(&huart1); /* initialize the app layer and give it a uart interface */

 /* For the UART RX, we are going to use some low level tricks for the stm32, because their HAL layer is not great at receiving
 * unkown lengths of data. This will set us up with an interrupt everytime a new byte comes in. its just cleaner and less hassle
 */
 UART_MASK_COMPUTATION(&huart1);									/* Sets Uart1's internal data mask based on STMCUBE configuration*/
 SET_BIT(huart1.Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); /* Enable the interrupts for STM32 UART receive */

 /* USER CODE END 2 */

Then add a call to process our service in the main loop

main.c:118:

/* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
 {

 /* Every 500 ms see if new data is ready, and read it */
 MRT_EVERY(100, ticks) /* convenience macro for systick timing*/
 {
 if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_READY))) /*wait until both flags are set */
 {
 temperature = hts_read_temp(&hts);
 humidity = hts_read_humidity(&hts);
 }
 }
 app_my_protocol_process(); /* process our service*/
 ticks++;
 MRT_DELAY_MS(10);

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 }

Now lets use the uart interrupt to feed our service

stm32l4xx_it.c:26

#include "my_service/app_my_protocol.h"

stm32l4xx_it.c:201

/**
 * @brief This function handles USART1 global interrupt.
 */
void USART1_IRQHandler(void)
{
 /* USER CODE BEGIN USART1_IRQn 0 */

 /* If RX-Not-Empty flag is set, then we have a byte of data */
 if(huart1.Instance->ISR & UART_FLAG_RXNE)
 {
 uint8_t data = (uint8_t)(huart1.Instance->RDR & (uint8_t)huart1.Mask); /* Mask Off Data */
 mp_service_feed(0, &data ,1); /* feed the byte to our service */
 }

 /* USER CODE END USART1_IRQn 0 */
 HAL_UART_IRQHandler(&huart1);
 /* USER CODE BEGIN USART1_IRQn 1 */

 /* USER CODE END USART1_IRQn 1 */
}

Since we are using the interrupt we can disable the uart_read in our application layer:

app_my_protocol.c:66 - comment out iface0_read()

void app_my_protocol_process()
{
 /* read in new data from iface 0*/
 // iface0_read();

 /* process the actual service */
 mp_service_process();

}

Before we add anything else, lets test our service. Find the com port that the device is on in device manager. in my case it is COM3

for WSL, COM ports are mapped to /dev/ttyS<Port Number>

open the poly-packet interpretter:

poly-packet -i my_protocol.yml

inside of poly-packet connect over serial with a baud of 115200

connect serial:/dev/ttyS3:115200
Ping

note: every protocol is built with a ping and ack packet

You should see your ‘Ping packet go out, and an ack returned’

______ _ ______ _ _
| ___ \ | | | ___ \ | | | |
| |_/ /__ | |_ _| |_/ /_ _ ___| | _____| |_
| __/ _ \| | | | | __/ _` |/ __| |/ / _ \ __|
| | | (_) | | |_| | | | (_| | (__| < __/ |_
_| ___/|_|__, _| __,_|___|_|____|__| [my_protocol protocol]
 __/ |
 |___/

 Port Opened : /dev/ttyS3

 --> { "packetType" : "Ping", "icd" : 3174876862}
 <-- { "packetType" : "Ack"}

tip: inside poly-packet, you can press tab to see available packets to send

 Step 6: Customize the service

Step 6: Customize the service

Now that we have our service working, lets make it do something useful. When we created the protocol description, we set up a poly_struct named ‘Device’. We are going to use this to store and serve information about the device.

First we will make changes to our application layer, we will add our struct, and clean up some un-used sections while we are there

app_my_protocol.c:8

/***
 Application Layer
***/

#include "app_my_protocol.h"
mrt_uart_handle_t ifac0;

mp_struct_t myDevice; /* create device struct for storing/serving our data */

static inline HandlerStatus_e iface0_write(uint8_t* data, int len)
{
 /* Place code for writing bytes on interface 0 here */
 MRT_UART_TX(ifac0, data, len, 10);

 return PACKET_SENT;
}

/***
 App Init/end
***/
void app_my_protocol_init(mrt_uart_handle_t uart_handle)
{
 /* Set ifac0 to uart handle, this can use any peripheral, but uart is the most common case */
 ifac0 = uart_handle; //set interface to uart handle

 //initialize service
 mp_service_init(1,16);

 mp_struct_build(&myDevice, MP_STRUCT_DEVICE); /* builds the generic poly_struct into a Device struct */
 mp_setDeviceName(&myDevice, "Jerry"); /* set the 'Name' field of the device struct */

 mp_service_register_bytes_tx(0, iface0_write);

}

Next we can fill out our packet handlers.

The only packets we need to handle are: getdata, whoAreYou, and setName. the rest of the handlers can be deleted. (They are defined weakly in the service layer)

app_my_protocol.c:63

/***
 Packet handlers
***/
/**
 *@brief Handler for receiving getData packets
 *@param getData incoming getData packet
 *@param sensorData sensorData packet to respond with
 *@return handling mp_status
 */
HandlerStatus_e mp_GetData_handler(mp_packet_t* mp_getData, mp_packet_t* mp_sensorData)
{

 mp_packet_copy(mp_sensorData, &myDevice); /* copy fields from 'myDevice' into the response packet*/

 return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

/**
 *@brief Handler for receiving whoAreYou packets
 *@param whoAreYou incoming whoAreYou packet
 *@param myNameIs myNameIs packet to respond with
 *@return handling mp_status
 */
HandlerStatus_e mp_WhoAreYou_handler(mp_packet_t* mp_whoAreYou, mp_packet_t* mp_myNameIs)
{

 mp_packet_copy(mp_myNameIs, &myDevice); /* copy fields from 'myDevice' into the response packet*/

 return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

/**
 *@brief Handler for receiving setName packets
 *@param setName incoming setName packet
 *@return handling mp_status
 */
HandlerStatus_e mp_SetName_handler(mp_packet_t* mp_setName)
{

 mp_packet_copy(&myDevice, mp_setName); /* Copy fields from incoming packet to 'myDevice' */

 return PACKET_HANDLED; /* Make sure to change this to PACKET_HANDLED*/
}

** Now we will use the sensor data from our device driver to set the fields of ‘myDevice’

make it available to our main.c

app_my_protocol.h:11

extern mp_struct_t myDevice;

Then add code to set the values in our main loop:

main.c:129

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
 {

 /* Every 500 ms see if new data is ready, and read it */
 MRT_EVERY(100, ticks) /* convenience macro for systick timing*/
 {
 if(hts_check_flag(&hts, &hts.mStatus, (HTS_STATUS_TEMP_READY | HTS_STATUS_HUM_READY))) /*wait until both flags are set */
 {
 temperature = hts_read_temp(&hts);
 humidity = hts_read_humidity(&hts);

 mp_setTemp(&myDevice, temperature);
 mp_setHumidity(&myDevice, humidity);

 }
 }
 app_my_protocol_process(); /* process our service*/
 ticks++;
 MRT_DELAY_MS(10);
 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */
 }

build!

 Step 7: Interact with poly-packet

Step 7: Interact with poly-packet

Now that our service is complete, we can interact with it using the poly-packet cli

poly-packet -i my_protocol.yml -c connect serial:/dev/ttyS3:115200

-c lets you pass a command on start-up, I use it as a convenient way to connect

Once you are in the CLI, you can send some packets

whoAreYou
getData
setName deviceName: Jason Berger
whoAreYou

produced the following output:

______ _ ______ _ _
| ___ \ | | | ___ \ | | | |
| |_/ /__ | |_ _| |_/ /_ _ ___| | _____| |_
| __/ _ \| | | | | __/ _` |/ __| |/ / _ \ __|
| | | (_) | | |_| | | | (_| | (__| < __/ |_
_| ___/|_|__, _| __,_|___|_|____|__| [my_protocol protocol]
 __/ |
 |___/

 Port Opened : /dev/ttyS3

 --> { "packetType" : "whoAreYou"}
 <-- { "packetType" : "myNameIs", "deviceName" : "Jerry"}

 --> { "packetType" : "getData"}
 <-- { "packetType" : "sensorData", "temp" : 2865, "humidity" : 4939}

 --> { "packetType" : "setName", "deviceName" : "Jason Berger"}
 <-- { "packetType" : "Ack"}

 --> { "packetType" : "whoAreYou"}
 <-- { "packetType" : "myNameIs", "deviceName" : "Jason Berger"}

 mrtutils

mrtutils

mrtutils is a collection of tools for working with the MrT framework. It includes tools for managing modules, creating device drivers, and implementing custom BLE profiles on supported platforms

pip install mrtutils

Tools

	mrt-config
	Manages MrT modules in a project.

	mrt-device
	Generates device drivers for register based devices

	mrt-ble
	Creates custom Bluetooth Low Energy GATT profiles along with C code, documentation, and a single page web client for the GATT server using Web Bluetooth API.

	mrt-version
	Used to manage version information of a project

	mrt-doc
	Generates project documentation

	mrt-gen
	Generates MrT module template

 mrt-config

mrt-config

mrt-config is the tool used to manage the MrT Modules in your project.

cd <path/to/project>
mrt-config <relative/path/for/MrT/root>

Note

If no path is provided, it will default to ./MrT and create the directory if it does not exist

This will open the mrt-config tool which allows you to select which modules you would like to integrate into your project. The UI is based on menuconfig to be as flexible as possible in terms of where you can run it, ie in containers or remote development environments over ssh.

[image: ../../_images/mrt-config.png]

Note

MrT Modules are added as git sub-modules, if you are in a directory that does not contain a git repo, it will initialize one.

 mrt-device

mrt-device

The mrt-device tool allows user to create driver code from device description files. This provides very consistent drivers and also creates an easily parseable device file as a byproduct. This can be used for better documentation as well as a basis for automated testing of hardware.

Note

The code generated from this tool requires the Mrt RegDev [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-device.html] module

Step 1: Define device:

Devices are defined with a YAML file.

To generate a blank template to start from:

mrt-device -t /path/to/file.yml

example from hts221 driver [https://gitlab.com/uprev/public/mrt/modules/Devices/Sensors/HTS221]

name: HTS221
description: Humidity and Temperature Sensor
category: Device
requires: [RegDevice,Platform]
datasheet: https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.DM00116291.pdf
mfr: STMicroelectronics
mfr_pn: HTS221TR
digikey_pn: 497-15382-1-ND

prefix: HTS
bus: I2C
i2c_addr: 0xBE

###
Registers
###

registers:
- WHO_AM_I: { addr: 0x0F , type: uint8_t, perm: R, desc: Id Register, default: 0xBC}
- AV_CONF: { addr: 0x10 , type: uint8_t, perm: RW, desc: Humidity and temperature resolution mode}
- CTRL1: { addr: 0x20 , type: uint8_t, perm: RW, desc: Control register 1}
- CTRL2: { addr: 0x21 , type: uint8_t, perm: RW, desc: Control register 2}
- CTRL3: { addr: 0x22 , type: uint8_t, perm: RW, desc: Control register 3}
- STATUS: { addr: 0x27 , type: uint8_t, perm: R, desc: Status register}
- HUMIDITY_OUT: { addr: 0x28 , type: int16_t, perm: R, desc: Relative humidity data }
- TEMP_OUT: { addr: 0x2A , type: int16_t, perm: R, desc: Temperature data}

- H0_rH_x2: { addr: 0x30 , type: uint8_t, perm: R, desc: Calibration data}
- H1_rH_x2: { addr: 0x31 , type: uint8_t, perm: R, desc: Calibration data}
- T0_DEGC_x8: { addr: 0x32 , type: uint8_t, perm: R, desc: Calibration data}
- T1_DEGC_x8: { addr: 0x33 , type: uint8_t, perm: R, desc: Calibration data}
- T1T0_MSB: { addr: 0x35 , type: uint8_t, perm: R, desc: Calibration data}
- H0_T0_OUT: { addr: 0x36 , type: int16_t, perm: R, desc: Calibration data}
- H1_T0_OUT: { addr: 0x3A , type: int16_t, perm: R, desc: Calibration data}
- T0_OUT: { addr: 0x3C , type: int16_t, perm: R, desc: Calibration data}
- T1_OUT: { addr: 0x3E , type: int16_t, perm: R, desc: Calibration data}

###
FIELDS
###
fields:
- STATUS:
 - TEMP_READY: { mask: 0x01, desc: indicates that a temperature reading is ready }
 - HUM_READY: { mask: 0x02, desc: indicates that a humidity reading is ready }

- CTRL1:
 - PD: {mask: 0x80, desc: power down mode}
 - BDU: {mask: 0x04, desc: Block Data update. Prevents update until LSB of data is read}
 - ODR:
 mask: 0x03
 desc: Selects the Output rate for the sensor data
 vals:
 - ONESHOT: { val: 0, desc: readings must be requested}
 - 1HZ: { val: 1, desc: 1 hz sampling}
 - 7HZ: { val: 2, desc: 7 hz sampling}
 - 12_5HZ: { val: 3, desc: 12.5 hz sampling}

- CTRL2:
 - BOOT: {mask: 0x80, desc: Reboot memory content}
 - HEATER: {mask: 0x02, desc: Enable intenal heating element}
 - ONESHOT: {mask: 0x01, desc: Start conversion for new data}

- TEMP_OUT:
 - TEMP_OUT: {mask: 0xFFFF, desc: Current ADC reading for temperature sensor}

- HUMIDITY_OUT:
 - HUM_OUT: {mask: 0xFFFF, desc: Current ADC reading for humidity sensor}

###
Preset Configs
###
configs:
- auto_1hz:
 desc: Sets device to update every second
 registers:
 - CTRL2: {BOOT: 1, delay: 20} #20 ms delay after register write
 - CTRL1: { ODR: 1HZ, BDU: 1}

The descriptor file contains device information such as part numbers, links to datashees, and other relevant information. It also contains definitions of registers and data structures on the device. The main sections are Header Properties , Registers , and Fields

Header Properties

The header of the descriptor file contains several Properties. name and description are required, but others should also be included if they apply

	name:

	Name of device

	description:

	Description of device

	datasheet:

	url to public datasheet

	mfr:

	Name of manufacturer

	mfr_pn:

	Manufacturer part number

	digikey_pn:

	Digikey part number

	prefix:

	prefix to append to struct and function names to prevent conflicts in projects

	bus:

	bus type for driver, can be I2C, SPI, UART, or any combination of those (comma separated)

	i2c_addr:

	I2C address for device. For devices with configurable address, set this to the base address. It can be changed in the driver

Registers

registers are individualy addressable memory registers on the device. each register can have the folowing attributes:

	addr: register address on device

	type: register type, (default is uin8_t)

	perm: premissions on register R for read, W for write

	desc: description of register. used for code documentation

	default: default value of the register

Fields

fields are data fields contained in registers. They are grouped by register and they contain the following attributes:

	mask : this specifies the mask for the field. This is used to mask and shift data to match the field.

	vals : this is a list of possible values and their descriptions for the field.

Note

If a field is defined with a single bit mask, and no values, it is interpretted as a ‘flag’. Flag fields have macros generated for setting, clearing, and checking them.

Configs

Configs allow the user to define preset configs for common use cases. This will create a macro for setting up the registers

/**
* @brief Sets device to update every second
* @param dev ptr to HTS221 device
*/
#define HTS_LOAD_CONFIG_AUTO_1HZ(dev) \
hts_write_reg((dev), &(dev)->mCtrl2, 0x80); /* BOOT: 1 */ \
MRT_DELAY_MS(20); /* Delay for CTRL2 */ \
hts_write_reg((dev), &(dev)->mCtrl1, 0x05); /* ODR: 1HZ , BDU: 1 */ \

Step 2: generate the code

To generate the code, use mrt-device and specify an input and an output path:

mrt-device -i device.yaml -o .

The tool will generate 3 files (using hts221 [https://gitlab.com/uprev/public/mrt/modules/Devices/Sensors/HTS221] as an example):

	hts221.h : header file for driver

	hts221.c : Source file for driver

	hts221_dev.h : Macros generated from device file. this contains macros for addresses, values, masks, and functions for accessing fields/flags in registers.

Step 3: customize

This will provide a good base with access to all of the register. To add more functionality you can add to the code. If you want to ability to modify the device file further, keep your code inside of the ‘user code’ blocks provided:

/*user-block-init-start*/
/*user-block-init-end*/

If the device does not follow the normal register access schemes, you can specify your own, and redirect the mrt_regdev_t fRead and fWrite function pointers to them.

/**
 *@brief writes buffer to address of device
 *@param dev ptr to generic register device
 *@param addr address in memory to write
 *@param data ptr to data to be written
 *param len length of data to write
 *@return status (type defined by platform)
 */
mrt_status_t my_write_function(mrt_regdev_t* dev, uint32_t addr, uint8_t* data,int len)
{
 //Do Something
}

static mrt_status_t hts_init(hts221_t* dev)
{
 /*user-block-init-start*/
 dev->mRegDev.fWrite = my_write_function;
 /*user-block-init-end*/
 return MRT_STATUS_OK;
}

 mrt-ble

mrt-ble

mrt-ble is a tool for creating gatt profile to use on BLE projects. It uses a yaml descriptor file to create C code and documentation for the Gatt profile. The generated Documentation includes a Live ICD which is a single page web app that can connect to the ble device and interact with the GATT Server.

mrt-ble is a tool in mrtutils, so if that is not already installed, install it first:

pip install mrtutils

To get started, you can create a template:

mrt-ble -t my_profile

this will create a decriptor file my_profile.yml with an example profile filled out

Step 1: Define the profile

The Generated example descriptor file has comments to explaind the various fields. The overall structure is that each descriptor file creates a Profile. A Profile is a group of Services, and a Service is a group of related Characteristics

Header Properties

The beggining of the document contains properties for the profile .

	name:

	Name of Profile

	description:

	Description of Profile

	prefix:

	short prefix to append to profile structs and functions to avoid conflicts in code

Services

Services can be custom, or imported from Bluetooth SIG standards using a URI. When importing from a SIG standard, all Mandatory Characteristics are automatically added, but optional ones must be specified. See the Device Service and Battery Service in the Example file for an example of this.

Every service must have a prefix. And all custom services must have a UUID.

Optional properties:

	icon:

	named icon from FontAwesome [https://fontawesome.com/icons?d=gallery&m=free]

Characteristics

Characteristics are individual fields in a Service. In a SIG standard Service you can use the SIG standard Characteristics by specifying a URI.

Custom Characteristics must have a type. this can be any of the following

	Type

	Description

	uint8

	
	Basic Unsigned Integer
	Types

	uint16

	uint32

	uint64

	uint

	char

	int8

	
	Basic Signed Integer
	Types

	int16

	int32

	int64

	int

	float

	decimal types

	double

	string

	array of chars

	Enum

	uint8 with named values.
Each value gets a symbol
in code

	flags

	Bitmask with a defined
symbol in code for
each bit. (maximum
of 32 bits in a
Characteristic)

	mask

	Array

	specified with
<type>*<size>
ex: uint16*32 is an array
of 32 uint16 values

Other properties in a Characteristic include:

Example File

name: sample
author: Jason Berger
created: 02/20/2020
desc: GATT profile example
prefix: tp

services: #list multiple services in file to create full profile

##
Device Service
#
Shows example of using Bluetoot SIG define Services
##
- Device:
 uri: org.bluetooth.service.device_information #User URI of bluetooth sig standard service. For a list of all standard services visit https://www.bluetooth.com/specifications/gatt/services
 prefix: dvc
 chars: #list out uris of 'optional' desired chars for bluetooth SIG services
 - {uri: org.bluetooth.characteristic.manufacturer_name_string , default: Up-Rev} #Set a default value
 - {uri: org.bluetooth.characteristic.serial_number_string}
 - {uri: org.bluetooth.characteristic.hardware_revision_string}
 - {uri: org.bluetooth.characteristic.firmware_revision_string, desc: Firmware revision} #You can override defaults from Bluetooth SIG (name,desc, perm, etc..)

##
Battery Service
#
Shows example of inline declaration for standard serivce
##
- Battery: {uri: org.bluetooth.service.battery_service}
 #if a prefix isnt specified it will create one using the first 3 characters of the name.
 #no need to list chars, because there is only one for the battery service and it is mandatory per the SIG spec

##
Sprinkler Servive
#
Show example of creating a custom service to control an
Automated sprinler system
#
- Controls 6 valves and pump for sprinklers
- Temperature sensor
- 6 soil moisture sensors
##
- Sprinkler:
 prefix: spr
 desc: Custom service for a sprinkler system
 uuid: 71a8-1b49-ce39-0088-6b62-c8ed-9e20-9a5b
 icon: fa-faucet # This adds an icon to the Live ICD for the service using Font-Awesome. Visit their site to view options: https://fontawesome.com/icons?d=gallery&m=free
 chars:

 - Thresh: { type: uint16, perm: RW , desc: Moisture Threshold to turn on the sprinklers} #if char uuid is blank, it will increment from previous char, or service uuid if it is the first in the service

 - Temperature: { type: uint16, perm: RN , desc: Temperature reading from sensor, unit: °f, coef: 0.01} #unit and coef have no affect on data, just how ther are displayed in the live ICD

 - Moisture: {type: uint16*6, desc: Moisture readings from all 6 zones, unit: "%" } # Create an array of 6 uint16_t values.

 - Relays:
 type: flags #flags create an array of bits which are individualy controlled
 perm: RWN #Read Write and Notify permissions
 desc: Controls Relays for pump and valves
 vals:
 - pump: {desc: pump control}
 - valve01: valve 1 control #For convenience values can be written in this shorthand. same as '- valve01: {desc: valve 1 control}'
 - valve02: valve 2 control
 - valve03: valve 3 control
 - valve04: valve 4 control
 - valve05: valve 5 control
 - valve06: valve 6 control

 - SoilType:
 type: enum #enums are treated as an unsigned int, but they have symbols defined and a switch case generated in the write handler
 perm: RW
 desc: Soil type for the yard
 vals:
 - Peat: Peat soil
 - Sand: Peat soil
 - Clay: Peat soil
 - TopSoil

##
Firmware OTA Service
##
- FOTA:
 desc: sercive for performing over the air updates
 uuid: 71a8-1b49-ce39-0088-6b62-c8ed-9A10-9a5b
 prefix: ota
 chars:
 - version: { type: string, perm: RW, desc: current Firmware version} # uuid: 0x9A11
 - newVerion: {type: string, perm: RW, desc: version of new firmware being loaded}
 - data: {type: uint8*64, perm: RW, desc: current block of data}
 - seq: {type: uint32, perm: RW, desc: sequence number of current block }
 - crc: {type: uint32, perm: RW, desc: crc of new firmware }
 - status:
 type: enum
 perm: RW
 desc: status of OTA process
 vals:
 - IDLE: { desc: no ota operation taking place}
 - DOWNLOAD: { desc: Currently downloading new firmware}
 - COMPLETE: { desc: Firmware download complete. ready to update}

Step 2: Generate Code

Once you have the profile defined, you can generate the code with

mrt-ble -i <yaml file> -o <output/path> -d <doc/path>

Note

regenerating the source code will not overwrite any code in the handler functions for the profile or services.

This will generate the following structure with source/header files:

outputDir

├── svc

│ ├── dev_svc.h

│ ├── dev_svc.c

│ ├── ss_svc.h

│ ├── ss_svc.c

│ ├── bat_svc.h

│ ├── bat_svc.c

│ ├── ota_svc.h

│ └── ota_svc.c

├── app_dev_svc.c

├── app_ss_svc.c

├── app_bat_svc.c

├── app_ota_svc.c

└── sample_profile.c/h

Step 3: Integrating Code

The files in the svc folder are the low level descriptors and weakly defined handler functions. In most cases, there is no need to modify these files.

The app_xx_svc.c files are for application level logic and contain the actual handler functions. This is where you will put in your logic for handling events for each characteristic.

Each service will have an event handler for each Characteristic and a post_init handler. The post_init handler is called after the GATT server is initialized. This is where default values will be set.

The Characteristic event handlers handle all events for a given Characteristic. The mrt_gatt_evt_t struct contains the type of event [READ, WRITE,NOTIFY], as well as the raw data, and data size for the event.

example handlers from app_dev_svc.c:

/* Post Init ---*/

/**
* @brief Called after GATT Server is intialized
*/
void dev_svc_post_init_handler(void)
{
 dvc_set_manufacturer_name("Up-Rev");
 dvc_set_firmware_revision("0.1.9");
 dvc_set_serial_number("001");
}

/* Characteristic Event Handlers--*/

/**
* @brief Handles GATT event on Manufacturer_Name Characteristic
* @param event - ptr to mrt_gatt_evt_t event with data and event type
*/
mrt_status_t dev_manufacturer_name_handler(mrt_gatt_evt_t* event)
{
 if(event->mType == GATT_EVT_VALUE_WRITE)
 {
 char* val = ((char*) event->mData.data); /* Cast to correct data type*/
 MRT_PRINTF("Device name set to %s", val);
 }

 return MRT_STATUS_OK;
}

Note

For more information on the mrt_gatt_evt_t struct, read the docs for the gatt-server module [https://bitbucket.org/uprev/device-gatt-server/src/master/]

The source code and header for sample_profile.c contain the initialization funtion which will initialize all of the services. This function is called by the platform once the GATT server is up. This will vary from platform to platform so check the Platform documentation for how to implement this. But the most common method is to register the init function, before starting any bluetooth services.

MRT_GATT_REGISTER_PROFILE_INIT(sample_profile_init);

Once the function is registered, it is up to the Platform layer to call the function at the appropriate time.

Live ICD

Once your GATT profile is running on the target device, it is useful to be able to interact with it for testing and development. When the code is generated with documentation it produces 2 files. The first is a plain text ICD for documentation, and the second is a Live ICD. This is a single page web app which can connect to the device over BLE and provide a GUI for interacting with the device.

[image: ../../_images/live_icd.png]

 mrt-version

mrt-version

mrt-version is a tool for managing the version information in a project. It keeps the version information in a header file, and provides a convenient way to update it and use the version with continuous integration tools.

Creating the header file

mrt-version main/version.h

This will create the header file, with the initial version set to 0.0.0.0

Note

‘yml’, ‘env’, ‘json’, and ‘h’ files are supported

/**
 * @file version.h
 * @author generated by mrt-version (https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-version.html)
 * @brief version header
 * @date 05/01/21
 */

#define VERSION_MAJOR 0
#define VERSION_MINOR 0
#define VERSION_PATCH 0
#define VERSION_BUILD 0
#define VERSION_BRANCH "master"
#define VERSION_COMMIT "c4526b4ec43b9a74c572bfbb6059b65bce4b0029"

#define VERSION_STRING "0.0.0.0"

Note

To include repo information, call the tool from the root of the projects repo. when the branch is not ‘master’ an ‘*’ will be added to the end of VERSION_STRING. This makes it clear to the user/tester that they are not using an official build

Supported File Types

mrt-version can be used with several file types for different types of projects. The file type is automatically detected from the extension of the filename.

mrt-version version.env # environment variable file
mrt-version version.h # C header file
mrt-version version.json # JSON file
mrt-version version.yml # YAML file

Updating the Version

After the initial file is created, you can set specific parts with the command line arguments (–major,–minor,–patch, –build). These values can be set to a value or incremented by a value. Minor and Patch can also be set to auto. auto will count the number of commits since the parent portion was last updated. i.e. If Patch is set to auto it will count the number of commits on the master branch since Minor was last updated, and use that count as the new value for Patch

mrt-version main/version.h --patch +1 --build 44

#define VERSION_MAJOR 0
#define VERSION_MINOR 0
#define VERSION_PATCH 1
#define VERSION_BUILD 44
#define VERSION_BRANCH "master"
#define VERSION_COMMIT "c4526b4ec43b9a74c572bfbb6059b65bce4b0029"

#define VERSION_STRING "0.0.1.44"

Note

Incrementing Minor will reset Patch to 0, and incrementing Major will reset Minor and Patch to 0.

Auto

Minor and Patch can also be set to auto. auto will count the number of commits since the parent portion was last updated. i.e. If Patch is set to auto it will count the number of commits on the master branch since Minor was last updated, and use that count as the new value for Patch

example:

[image: ../../_images/git_tree_auto.png]
mrt-version inc/version.h --patch auto

This would change the version to v0.1.4 since there have been 4 commits to the master branch since the Minor was incremented at the v0.1.0 tag

Build System/Webhook integration

The tool will always output the version string so it can be easily used for other things such as git tags and documentation.

In this example patch is incremented by 1, and then the commit is tagged in the repo with the output (i.e. ‘v2.1.3’)

VERSION_STR=$(mrt-version main/version.h --patch +1)
git tag -a $VERSION_STR -m "Adding Version Tag"

By default the output format is Majon.Minor.Patch, but it can be customized with the –format flag. It uses simple string substition and the available variables are $MAJOR, $MINOR, $PATCH, $BUILD , $BRANCH, and $HASH.

Future Improvements

The next step will be to have this tool generate and update changelog as the version is updated.

 mrt-doc

mrt-doc

mrt-doc is a tool used for documentation in projects. It gathers all of the mrt.yml files from the modules and creates a master mrt.yml in the root MrT directory. It can also be used to combine all of the documentationusing the -d flag.

mrt-doc -d doc/moddocs

This will create the directory doc/moddocs and populate it with a folder structure that matches the structure of the modules, along with any README files. Each directory in the structure will contain an index.rst containing a toctree for that folder.

Note

Currently supported file types are `reStructuredText`_ and `Markdown`_

Example project contain some MrT modules:

doc
└── moddocs
 ├── Devices
 │ ├── RegDevice
 │ │ └── README.rst
 │ ├── Sensors
 │ │ ├── HTS221
 │ │ │ └── README.rst
 │ │ └── index.rst
 │ └── index.rst
 ├── Platforms
 │ ├── Atmel
 │ │ └── README.md
 │ ├── Common
 │ │ └── README.md
 │ └── index.rst
 ├── Utilities
 │ ├── COBS
 │ │ └── README.md
 │ ├── JSON
 │ │ └── README.md
 │ ├── PolyPacket
 │ │ └── doc
 │ │ │ └── logo.png
 │ │ └── README.rst
 │ └── index.rst
 └── index.rst

Note

If you would like to include additional files (documents, pictures, etc) in a submodules documentation, add them to a doc folder in the submodule. This folder will also be copied into the structure.

 mrt-gen

mrt-gen

Code Templates

mrt-gen is a tool used to create common project components. By default it creates plain .h/.c files

mrt-gen src/test

This creates src/test.h and src/test.c. Adding ‘-t cpp’ will create src/test.h and src/test.cpp

Creating Sphinx documentation

If a --type is not specified, and the path ends with docs, it will create a docs folder with a sphinx template.

mrt-gen ./docs

docs
├── Makefile
├── assets
│ └── diagrams
│ └── samplediagram.dio.png
├── conf.py
├── index.rst
└── pages
 └── samplepage.rst

This can be used to generate an html or pdf version of the documentation

cd docs
make latexpdf
make html

MrT Module Template

using the -m flag will create an MrT submodule with the required items.

mrt-gen -m mymodule

└── mymodule
 ├── README.rst
 ├── mrt.yml
 ├── mymodule.c
 ├── mymodule.h
 └── mymodule_UT.cpp

 PolyPacket

PolyPacket

[image: ../../_images/polypacket.png]
Poly Packet is a set of tools aimed at generating serial communication protocols from embedded projects. Protocols are described in an YAML document which can be easily shared with all components of a system.

A python script is used to parse the YAML file and generate C/C++ code as well as documentation. The code generation tool can create the back end service, application layer, and even an entire linux utility app

Installation

while PolyPacket is its own package separate from mrtutils, it is automatically installed when mrtutils is installed. But if you want to install it separately you can:

pip install polypacket

Step 1: Defining a Protocol

Protocols are defined with a YAML file. To get started you can generate a sample template:

poly-make -t my_protocol

This will generate my_protocol.yml

Descriptor File

Protocols are generated using YAML. The messaging structure is made up 4 entity types:

	Fields

	Packets

	Vals

	Structs

Fields

A field is a data object within a packet. These can be expressed either as nested yaml, or an inline dictionary

Example fields:

fields:
- sensorA: { type: int16 ,desc: Value of Sensor A}
- sensorB:
 type: int
 format: hex
 desc: Value of Sensor B

- sensorsC_Z:
 type: int*24
 desc: Values for remaining 24 sensors

	type:

	The data type for the field. *n indicates it is an array with a max size of n

	format:

	(optional) This sets the display format used for the toString and toJsonString methods [hex , dec , assci]

	desc:

	(optional) The description of the field. This is used to create the documentation

Supported types:

	Type

	Description

	uint8

	
	Basic Unsigned Integer
	Types

	uint16

	uint32

	uint64

	uint

	char

	int8

	
	Basic Signed Integer
	Types

	int16

	int32

	int64

	int

	float

	decimal types

	double

	string

	array of chars

	Enum

	uint8 with named values.
Each value gets a symbol
in code

	flags

	Bitmask with a defined
symbol in code for
each bit. (maximum
of 32 bits in a
Characteristic)

	mask

	Array

	specified with
<type>*<size>
ex: uint16*32 is an array
of 64 uint16 values

Fields can be nested into ‘Field Groups’ for convenience

fields:
- header:
 - src: {type: uint16, desc: Address of node sending message }
 - dst: {type: uint16, desc: Address of node to receive message }

Note

these will be added to the packet as regular fields. The grouping is just for convenience

Packets

A Packet describes an entire message and is made up of fields

example Packet:

packets:
- Data:
 desc: contains data from a sensor
 fields:
 - header
 - sensorA
 - sensorB
 - sensorName

	name:

	The name of the packet

	desc:

	(optional) description of the packet for documentation

	response:

	(optional) name of the packet type expected in response to this message (if any)

within the packet we reference Fields which have already been declared in the Fields section. these references contain 3 attributes:

	name:

	The name of the field

	req:

	(optional) makes the field a requirement for this packet type

	desc:

	(optional) description of this field for this packet type, will override fields description in the documentation for this packet type only

Val

Val entities are used for defining options in enum and flags fields.

fields:
- cmd:
 type: enum
 format: hex
 desc: command byte for controlling node
 vals:
 - led_ON: { desc: turns on led}
 - led_OFF: { desc: turns off led}
 - reset: { desc: resets device }

In this example an enum is used to set up some predefined options for the cmd field. enums are created with sequential values starting at 0. a flags field is defined in the same way, but instead of sequential numbers, it shifts bits to the left, to create a group of individually set-able flags.

Struct

Structs are meant to store a model of an object locally. at the low level structs are essentially the same thing as packets in that they are a collection of fields. The only real difference is the name, and how they are documented.

>The purpose of structs is they make it easy to manage remote object(s). poly_packet_copy(dst,src) copies all mutual fields from src to dst, so using a single line in the handlers for the get/set packets gives us a remotely configurable node

structs:

 - Node:
 desc: struct for modeling node
 field:
 - sensorA
 - sensorB
 - sensorName

Example of Struct usage:

sp_struct_t thisNode; //must be initialized with sp_struct_build(&thisNode, SP_STRUCT_NODE);

HandlerStatus_e sp_Data_handler(sp_packet_t* sp_data)
{

sp_packet_copy(&thisNode, sp_data); //update thisNode from incoming data packet

return PACKET_HANDLED;
}

HandlerStatus_e sp_GetData_handler(sp_packet_t* sp_getData, sp_packet_t* sp_data)
{

sp_packet_copy(sp_data, &thisNode); //update data packet with fields from thisNode

return PACKET_HANDLED;
}

Example Protocol

Here is an example file. This is the starting point when you generate a template:

name: sample
prefix: sp #this defines the prefix used for functions and types in the code. This allows multiple protocols to be used in a project
desc: This is a sample protocol made up to demonstrate features of the PolyPacket
code generation tool. The idea is to have a tool that can automatically create parseable/serializable
messaging for embedded systems

###
FIELDS
###

fields:

#Fields can be nested into a 'Field Group' for convenience. They will be put in the packet just like regular fields
- header:
 - src: {type: uint16, desc: Address of node sending message }
 - dst: {type: uint16, desc: Address of node to receive message }

- sensorA: { type: int16 ,desc: Value of Sensor A} #Simple Fields can be defined as inline dictionares to save space

- sensorB:
 type: int
 desc: Value of Sensor B

- sensorName:
 type: string
 desc: Name of sensor

- cmd:
 type: enum
 format: hex
 desc: command byte for controlling node
 vals:
 - led_ON: { desc: turns on led}
 - led_OFF: { desc: turns off led}
 - reset: { desc: resets device }

###
Packets
###
packets:
- SendCmd:
 desc: Message to send command to node
 fields:
 - header
 - cmd

- GetData:
 desc: Message tp get data from node
 response: Data #A response packet can be specified
 fields:
 - header

- Data:
 desc: contains data from a sensor
 fields:
 - header
 - sensorA
 - sensorB
 - sensorName : {desc: Name of sensor sending data } #Field descriptions can be overriden for different packets
###
Structs
###

structs:

- Node:
 desc: struct for modeling node
 fields:
 - sensorA
 - sensorB
 - sensorName

Agents

Agents allow the CLI to be extended to simulate behavior and use custom commands. They do not affect the way code is generated, they are only used when running the CLI tool.

	Display custom/calculated information based on packet data

	route packets to other interfaces

	simulate values or responses for testing

	create full a test utility which verifies data in the packets

###
Agents
###
agents:
 # This creates an agent named 'node' to load it, add '-s node' when running poly packet
 # naming an agent 'default' will cause it to load automatically when the CLI is started
 - node:
 # init signature is init(service):
 # There is a global dicst named DataStore that can be used to store variables
 init: |
 DataStore['node'] = service.newStruct('Node')
 DataStore['node'].setField('sensorName', 'node01')
 DataStore['node'].setField('sensorA', 25)
 DataStore['node'].setField('sensorB', 65)
 node = DataStore['node']
 service.print('\nCreating Sensor node:\n name: {0}\n sensorA: {1}\n sensorB: {2}\n'.format(node.getField('sensorName'),node.getField('sensorA'),node.getField('sensorB')))

 def myFunc():
 service.print('myFunc called')

 #handlers fill out a function with the signature <name>_handler(service, req, resp):
 # you can print out to the console with service.print(text)
 handlers:

 #Use packets/nodes can be copied to eachother. All shared fields that are present in the source will get copied to the destination
 - SetData: |
 req.copyTo(DataStore['node'])

 - GetData: |
 DataStore['node'].copyTo(resp)

 #You can add custom commands to an agent that will be loaded in for autocomplete and help menus in the CLI
 commands:
 - rename:
 desc: renames the node
 args:
 - name: {desc: new name for node, default: new_name}
 handler: |
 DataStore['node'].setField('sensorName', name)
 service.print('\nRenaming Sensor node:\n name: {0}\n'.format(name))

Note

Agents can be loaded by adding the ‘-a <agent_name>’ flag when running the CLI, or using the loadAgent command in the CLI. If an agent named ‘default’ is present, it will be loaded automatically when the CLI is started.

Each agent has 3 sections:

init:

This is run when the agent is loaded. It is used to initialize the agent and set up any variables that will be used in the handlers. This block of code is executed in the global scope, so functions defined here will be available to the handlers. This section can also be used to import modules that will be used in the handlers.

handlers:

This is a list of packet handlers. The name of the handler must match the name of the packet it handles.

The signature of the handler is: <name>_handler(service, req, resp)

	service - The poly packet service. This is used to access the packet data and send packets

	req - The incoming request packet

	resp - the outgoing response packet

commands:

This is a list of custom commands that can be run from the CLI. The name of the command is the name of the command that will be run from the CLI.The handler is a python script that will be run when the command is called.

The signature of the command handler is: <name>_cmd_handler(service, args)

	service - The poly packet service. This is used to access the packet data and send packets

	args - A dictionary of the arguments passed to the command. The keys are the names of the arguments and the values are the values passed in.
* If no value is passed in, the default value will be used. If no default value is specified, the argument will be None
* args are defined in the handler, so you can use them by name without needing to use args[‘name’]

Plugins:

Protocol files can include other protocol files. This allows you to create a library of common packets and structs that can be used across multiple protocols. To inlude a protocol file, use the Plugins directive.

plugins:
 - https://gitlab.com/uprev/public/mrt/Modules/Utilities/OTA/poly/ota-protocol.yml: {prefix: ota}
 - /path/to/protocol2.yml

	Plugin paths can be local or a url.

	The prefix is used to prefix all packets and fields in the plugin. This can be used to avoid name collisions between plugins and the base protocol

Step 2: Generating the Code

poly-make is the tool that will turn the yaml description into c code for projects.

poly-make -i my_protocol.yml -o . - a

	-i:

	sets the input file

	-o:

	tells it where to create the C files for the service

	-a:

	tells the tool to create the application layer (this is not required, but is a helpful starting point)

Step 3a: Using The Code C/C++

The C code generated for the service in step 2 relies on the MrT module /Utilities/PolyPacket.

Initializing service

To initialize a service call the service_init function.

Note

all service functions are prepended with the service prefix to allow multiple services to co-exist

sp_service_init(1, 8); //initialize the service with 1 interface, and a spool size of 8

This example initalizes the service with 1 interface. An interface is an abstract port into and out of the service. If your device needs to use the protocol on multiple hardware ports (Uart, TCP/IP, SPI, etc..) each one of these would have its own interface.

The Spool size just determines how much memory the message spool (per interface) uses. With a size of 8, we can have 8 messages on the outgoing spool for each interface at a time. This really only comes into play when we are using auto-retries since packets stay on the spool until they are acknowledged or exceed the max-retry count.

Register Tx functions

For each interface we need to register a send function. This allows the service to handle the actual sending so we can automate things like acknowledgements and retries. There are two types of send callbacks that can be registered:

typedef HandlerStatus_e (*poly_tx_byte_callback)(uint8_t* data , int len);
typedef HandlerStatus_e (*poly_tx_packet_callback)(poly_packet_t* packet);

The poly_tx_byte_callback will pass the packet as an array of COBS [https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing] encoded bytes which can be sent directly over a serial connection.

The poly_tx_packet_callback will pass a reference to the packet itself which can be converted to JSON, or manipulated before sending.

sp_service_register_tx_bytes(0, &uart_send); // register sending function for raw bytes on interface 0

sp_service_register_tx_packet(0, &json_send); // register sending function for entire packet on interface 0

once we have registered a callback for an interface, we can send messages to it using the quick send functions generated for the service.

sp_sendGetData(0); // Sends a 'GetData' packet over interface 0

Feed the service

The underlying service is responsible for packing and parsing the data. So wherever you read bytes off of the hardware interface, just feed them to the service.

void uart_rx_handler(uint8_t* data, int len)
{
 sp_service_feed(0, data, len); //feed the bytes to interface 0
}

From here the service will take care of parsing the data and dispatching messages to the proper message handler.

Sending messages

The service creates one-liner functions for easily sending simple messages

Using the example protocol we can send a message to get data from a remote device on interface 0 with:

sp_sendGetData(0); //send a 'GetData' packet over interface 0

for packet types with data fields, the datafields get turned into the arguments for the function

Note

Only ‘required’ fields can be used as arguments

sp_sendData(0, 97, 98, "My Sensor name"); //send a 'Data' packet over interface 0

Occasionally you may need to send a packet , but do not want to use the quick-send functions. an example of this would be sending a packet that includes optional fields. This can be done by using the <prefix>_packet_build function:

sp_packet_t msg;
sp_packet_build(&msg,SP_DATA_PACKET);

next we set fields in the message

sp_setSensorA(msg,97);
sp_setSensorName(msg,"my sensor");

sp_send(0,&msg);

Important

If you build a package, but do not send it, be sure to clean it! The safest practice is to just always clean it. There is no harm in cleaning a packet that has been sent.

sp_clean(&msg);

Receive Handlers

The generated service creates a handler for each packet type, they are created with weak attributes, so they can be overridden by just declaring them again in our code. If you specify a response for a packet in the YAML, the service will initialize that packet and pass a reference to the handler.

The handler can return the following statuses:

	PACKET_HANDLED:

	service will respond with the response packet (or an ack if none is specified)

	PACKET_UNHANDLED:

	packet will drop through to the Default_handler

	PACKET_IGNORED:

	packet will be ignored and skip the default handler

The following is our handler for ‘SetData’ type packets

/**
 *@brief Handler for receiving GetData packets
 *@param GetData incoming GetData packet
 *@param Data Data packet to respond with
 *@return handling status
 */
HandlerStatus_e sp_GetData_handler(sp_packet_t* sp_GetData, sp_packet_t* sp_Data)
{
 //set the fields of the responese packet
 sp_setSensorA(sp_Data, 97);
 sp_setSensorB(sp_Data, 98);
 sp_setSensorName(sp_Data, "My sensor");

 return PACKET_HANDLED; //respond with response packet
}

Process

The service is meant to be run on many platforms, so it does not have built in threading/tasking. For it to continue handling messages, we have to call its process function either in a thread/task or in our super-loop

while(1)
{
sp_service_process();
}

Step 3b: Using The Code JSON

If you are working with json you can register a poly_tx_packet_callback and convert your packets to json strings for sending.

HandlerStatus_e json_send(poly_packet_t* packet)
{
 char buf[256];
 int len;

 len = sp_print_json(packet, buf); //print json string to buffer
 some_tcp_function(buf, len); //send json string out

 return PACKET_SENT;
}

after you initialize the service, register the callback:

sp_service_register_tx_packet(0, &json_send); // register sending function for entire packet on interface 0

Now when messages are sent out on interface 0, they will be converted to json strings and sent out with some_tcp_function.

Handling JSON packets

For handling incoming json packets, there are two options. you can feed the json message to the service for normal handling or call the json handler to bypass the normal service queue. This option makes it easy to use the service in synchronous tasks such as responding to an http request

Async JSON

void app_json_async_handler(char* strJson, int len)
{
 sp_service_feed_json(0,strJson, len);
}

Sync JSON

void app_json_sync_handler(const char* strRequest, int len, char* strResp)
{
 HandlerStatus_e status;
 status = sp_handle_json(strRequest, len, strResp);
}

PolyPacket CLI Tool

Once you have a descriptor file, you can run a live interface of the protocol using poly-packet

Open two terminals and connect them over udp to test it out:

terminal 1:

poly-packet -i sample_protocol.yml -c udp:8020

terminal 2:

poly-packet -i sample_protocol.yml -c udp:8010:8020

Note

The tool can connect over tcp, udp, and serial

The terminal interface uses autocompletion, so hit tab to show available packet/ field types. To send a packet just type the packet name followed by comma seperated field names and values.

example:
.. code-block:: bash

Data sensorA: 45, sensorB: 78, sensorName: mySensor

[image: ../../_images/cli.png]
The instance of the service running on port 8020 will respond to the packet with an ‘ack’

 Modules

Modules

This section contains the documentation for the individual modules. They are all pulled from the modules during build/tests of the main MrT repo.

Modules

	Platforms
	Platform-NRF5

	Linux

	ESP32

	STM32

	Atmel

	Common

	Utilities
	GFX
	ColorGfx

	Audio
	utility-audio-test

	utility-AudioXcoder

	Interfaces
	Gatt Interface

	OTA

	CRC

	ByteFifo

	COBS

	PolyPacket

	Fifo

	Devices
	Memory
	FL-S Series NOR Flash Memory

	SpiFlash

	Displays
	ST727A

	Device Driver for SSD1306 based oled displays

	ERCxxLcd

	Tri-Color E-ink display

	IO
	opex

	MotorDrivers
	STSPIN220

	Biometric
	ANV401 Fingerprint Sensor

	Sensors
	sht31

	LIS2DH12

	HTS221

	Device-LSM6D

	RF
	device-nrf24

	Power
	README

	stc3117

	BQ28Z

	Audio
	wm8731

	FPGA
	Spartan6

	RegDevice

 Platforms

Platforms

Platforms

	Platform-NRF5

	Linux

	ESP32

	STM32

	Atmel

	Common

 Platform-NRF5

Platform-NRF5

To use the NRF5 Abstraction layer, create a repo with an NRF5 project.

Use the mrt-config [https://github.com/uprev-mrt/mrtutils] tool to add in submodules. Make sure to import the Platforms/Common and Platforms/NRF5 modules

Setting the Platform

To set the project to use the NRF5 Abstraction module you need to create an MRT_PLATFORM symbol with a value of MRT_NRF5. If using the nrf5 project template, this can be done by adding the following linke to Makefile:

 Linux

Linux

Platform abstraction for linux

 ESP32

ESP32

Requires: Modules/Platforms/Common

Following the example projects to create a template, you should end up with a main directory containing a component.mk file.

add the following lines to this coponent.mk, filling in the modules used…

CFLAGS+= -DMRT_PLATFORM=MRT_ESP32

COMPONENT_ADD_INCLUDEDIRS := Path/To/MrT/Modules Path/To/MrtModules/<module-1-path> Path/To/MrtModules/<module-2-path>

COMPONENT_SRCDIRS := Path/To/MrT/Modules Path/To/MrtModules/<module-1-path> Path/To/MrtModules/<module-2-path>

This is plannned to be improved so you dont have to list each module path

 STM32

STM32

To use the stm32 Abstraction layer, create a repo with an STM32 project. The recommended tool is the STM32CubeIDE

Use the mrt-config [https://github.com/uprev-mrt/mrtutils] tool to add in submodules. Make sure to import the Platforms/Common and Platforms/STM32 modules

Note

after importing modules, right click the project and hit refresh so it sees the new directories

To use the STM32 platform, cofigure the following settings:

	Project->Properties->C/C++ General->Path and Symbols:

	Under the Symbols tab add a symbol named MRT_PLATFORM with the value MRT_STM32_HAL

	Under the Source Location tab click add and select the Modules directory under Mr T

	Under the Includes tab, click add and add the path to the Modules directory under Mr T

Troubleshooting common problems

main.h no such file

	
	main.h no such file or directory
	This issue is normally accompanied by a wrench icon on the MrT directory which indicates local directory settings overriding the workspace settins. To correct this, right click the folder and click Resource configurations -> Reset to Defaults

Using ACI BLE

Important

deprecrated. Gatt Interface should now use the stm32_gatt_adapter

To use the STM32 ACI interface for BLE:

	Project->Properties->C/C++ General->Path and Symbols:
* Under the Symbols tab add a symbol named STM32_GATT_MODULE_ENABLED

Generate the services/profile using mrt-ble [https://github.com/uprev-mrt/mrtutils]

The output will be a header/source for each service, and a header/source for the profile.
In main.c, before ‘APPE_Init();’ register the profile init function:

MRT_GATT_REGISTER_PROFILE_INIT(example_profile_init);

When the server is initialized by the system it will create and register all services and characteristics. To update a value use:

MRT_GATT_UPDATE_CHAR(&env_svc.mTemp, (uint8_t*)&temp, sizeof(temp)); /* replace env_svc.mTemp with a char in one of your services*/

Enabling printf

The Stm32 programmers use the SWO pin to print messages back to the host. This can be useful to log out messages to the console for debug. To enable printf to work through the SWO pin follow these steps:

	add ‘-lc -lrdimon’ to linker flags

	in the Debug configuration (little arrow by the bug icon) under ‘Start Up’ tab add “monitor arm semihosting enable” to initialization commands

	add the following code snippets:

top of main.c:

#include "stdio.h"

int __io_putchar(int ch)
{
 ITM_SendChar(ch);
 return(ch);
}

int _write(int file, char *ptr, int len)
{
 int DataIdx;
 for (DataIdx = 0; DataIdx < len; DataIdx++)
 {
 __io_putchar(*ptr++);
 }
 return len;
}

extern void initialise_monitor_handles(void);

inside main()

initialise_monitor_handles();

 Atmel

Atmel

Requires: Modules/Platforms/Common

To use with an atmel asf project, include the Mr T repo as a submodule of the project

(for more detailed instruction visit the README from the MrT/Config Repo)

Integrating to Atmel Studio

Once you have created your project and imported the Mr T modules needed, open the project in Atmel Studio and follow these steps:

	Click the ‘Show All files’ button in the solution explorer

	right click mrt/Modules/mrt_platform, and select ‘Include in project’

	go to the poject properties and add the symbol for your framework

MRT_PLATFORM_ATMEL_ASF for atmel asf projects

MRT_PLATFORM_ATMEL_START for atmel-start projects

	go to the poject properties and add ‘src/mrt/Modules’ as an include path

	for each module you would like to use, right click the module directory in the solution explorer, and click ‘Include in project’

 Common

Common

This module defines definitions and functions common to all platforms. It must be included with any project that uses on the of the Platform abstractions.

FreeRTOS

To enable FreeRTOS add the symbol MRT_FREERTOS to the project or define it above the include statement for mrt_platform.h. This will override the malloc and free functions, and map the MRT_MUTEX macros accordingly:

/**
 *@file mrt_FreeRTOS.h
 *@brief Abstraction header FreeRTOS
 *@author Jason Berger
 *@date 8/27/2020
 */

#pragma once

#include "cmsis_os.h"
#include "semphr.h"

#define malloc(size) pvPortMalloc(size)
#define free(ptr) vPortFree(ptr)

#define MRT_MUTEX_TYPE SemaphoreHandle_t
#define MRT_MUTEX_CREATE(m) (m) = xSemaphoreCreateMutex()
#define MRT_MUTEX_LOCK(m) xSemaphoreTake((m), portMAX_DELAY)
#define MRT_MUTEX_UNLOCK(m) xSemaphoreGive((m))
#define MRT_MUTEX_DELETE(m) vSemaphoreDelete((m))

 Utilities

Utilities

Utilities

	GFX
	ColorGfx

	Audio
	utility-audio-test

	utility-AudioXcoder

	Interfaces
	Gatt Interface

	OTA

	CRC

	ByteFifo

	COBS

	PolyPacket

	Fifo

 GFX

GFX

GFX

	ColorGfx

 ColorGfx

ColorGfx

Module for graphics buffering. The module is intended to handle graphics using multiple color modes (mono,565,24bit). Once functional this will be able to replace the existing MonoGFX. One benefit to this ithe ability to convert assets between color modes for displaying on any display. example: a color image could be displayed on a mono chromatic display, or a tri-color which buffers as 3 separate monochramitic canvases.

the gfx_t struct can be initialized ‘buffered’ or ‘unbuffered’. When it is buffered, it allocates its buffer in memory and works with the local copy. When it is unbuffered, all drawing functions are sent to the callback function for writing pixels. This allows the use of displays with areas too large to store in ram.

buffered example:

gfx_t gfx;

//initialize a 128x32 canvase
gfx_init_buffered(&gfx,128,32, GFX_COLOR_MODE_888);

//Set pen with stroke of 1 pixel and color red
gfx_set_pen(&gfx, 1, GFX_COLOR_RED);

//draw a 30x20 rectangle at x,y = 5,5 and fill it in
gfx_draw_rect(&gfx, 5,5,30,20, GFX_OPT_FILL);

 Audio

Audio

Audio

	utility-audio-test

	utility-AudioXcoder

 utility-audio-test

utility-audio-test

Utility for various audio testing

 utility-AudioXcoder

utility-AudioXcoder

Transcoding utility for audio data

 Interfaces

Interfaces

Interfaces

	Gatt Interface

 Gatt Interface

Gatt Interface

Backend C code for mrt-ble [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-ble.html] generated Gatt Profiles.

 OTA

OTA

This module provides utility functions and structs for managing OTA (Over the Air) update images in memory.

Typical OTA Update processes can be broken down into several steps:

	Staging the update image (Downloading the update image to a staging area in memory)

	Applying the update (Moving the update from the staging area to program memory)

	Rebooting the device to run the new firmware

OTA Image Manager

The ota_img_mgr_t struct provides a way to manage multiple OTA disks. This is useful if you have multiple storage devices, such as an SD card and a SPI flash chip.

	ota_img_mgr_t - Collection of ota_dsk_t structs.

	ota_dsk_t - A disk is a storage device. This can be a SPI flash chip, EEPROM, embedded flash, SD card, etc.

	ota_partition_t - A partition is a section of a disk. A disk can be split up into multiple partitions. Each partition contains a single image

	ota_img_t - An image is a file that contains the update data. This is usually a binary file.

Initializing Staging disk

#include "ota_img.h"
ota_img_mgr_t ota_mgr;

void spi_flash_write(uint32_t addr, uint8_t *data, uint32_t len)
{
 //TODO write to flash
}

void spi_flash_read(uint32_t addr, uint8_t *data, uint32_t len)
{
 //TODO read from flash
}

int main(void)
{
 ota_img_mgr_init(&ota_mgr);

 ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_read);

 //If there are no partitions, add them this is first boot, create partitions
 if(stagingDsk->partitionCount == 0)
 {
 //If dsk has not been partitioned, add partitions
 ota_dsk_add_partition(stagingDsk, 0, 56000, "firmware");
 ota_dsk_add_partition(stagingDsk, 0, 56000, "fpga");
 }

}

Staging an OTA Update image

#include "ota_img.h"
ota_img_mgr_t ota_mgr;

ota_partition_t* firmware_partition = NULL;
ota_partition_t* fpga_partition = NULL;

..

void ota_firmware_block_callback(uint32_t offset, uint8_t *data, uint32_t len)
{
 ota_partition_write_image(firmware_partition, offset, data, len)
}

int main(void)
{
 ota_img_mgr_init(&ota_mgr);

 ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_read);

 //If there are no partitions, add them this is first boot, create partitions
 if(stagingDsk->partitionCount == 0)
 {
 //If dsk has not been partitioned, add partitions
 ota_dsk_add_partition(stagingDsk, 0, 56000, "firmware");
 ota_dsk_add_partition(stagingDsk, 0, 56000, "fpga");
 }

 firmware_partition = ota_dsk_get_partition(&stagingDsk, "firmware");

 while(1)
 {
 //TODO Request next block from server
 }

}

Applying the Update

This step would usually take place in the bootlaoder.

If the staging area is already in a location where it can be executed, then you can just jump to that location. If there are multiple images for a ping-pong style update, then you can use the ota_dsk_get_active_partition function to get the active partition. only one partition can be active at a time. Setting a partition as active will set the other partition(s) as inactive.

#include "ota.h"
ota_img_mgr_t ota_mgr;

void stage_update() //This would be called during the staging process
{
 ota_ctx_init_staging(&spiFlash, spi_flash_write, spi_flash_read);
 ota_img_mgr_init(&ota_mgr);
 ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_read);

 ota_partition_t* partA = ota_dsk_get_partition(stagingDsk, "firmwareA");
 ota_partition_t* partB = ota_dsk_get_partition(stagingDsk, "firmwareB");

 if(partA->flags && OTA_PARTITION_FLAG_ACTIVE)
 {

 //TODO Write new image to partB

 ota_partition_set_active(partB);
 }
 else
 {
 //TODO Write new image to partA
 ota_partition_set_active(partA);
 }

}

int launch_application(void) //This would be called during the boot process
{

 ota_img_mgr_init(&ota_mgr);
 ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_read);

 //Get the active partition
 ota_partition_t* active_part = ota_dsk_get_active_partition(stagingDsk); //This will return partA if it is active, or partB if it is active.
 printf("Active partition is %s", active_part->label);
 //Jump to active_part->image.addr
}

If the staging area is not an executable location, then you will need to copy the image to an executable location. This can be done manually, or by giving the ota_dsk struct a read and write callback for the destination dsk and using the ota_partition_apply_update function. This function will copy the image to the destination and then verify it with the provided CRC32.

#include "ota.h"
#include "crc32.h"
ota_img_mgr_t ota_mgr;

ota_dsk_t* stagingDsk = NULL;
ota_dsk_t* nvsDsk = NULL;

#define BLOCK_SIZE 256
#define APPLICATION_ADDR 0x10000

mrt_status_t nvs_write(uint32_t addr, uint8_t *data, uint32_t len)
{
 //TODO write to nvs
}

mrt_status_t nvs_read(uint32_t addr, uint8_t *data, uint32_t len)
{
 //TODO read from nvs
}

int main(void)
{
 mrt_status_t status = MRT_STATUS_OK;
 ota_ctx_init(&ota, spi_flash_write, spi_flash_read, nvs_write, nvs_read);

 ota_img_mgr_init(&ota_mgr);
 stagingDsk = ota_img_mgr_add_dsk(&ota_mgr, "staging", spi_flash_write, spi_flash_read);
 nvsDsk = ota_img_mgr_add_dsk(&ota_mgr, "nvs", nvs_write, nvs_read);

 ota_partition_t* firmware_staging_partition = ota_dsk_get_partition(stagingDsk, "firmware");
 ota_partition_t* firmware_exec_partition = ota_dsk_get_partition(nvsDsk, "firmware");

 //IF the firmware partition is not null and the new flag is set, then apply the update
 if((firmware_staging_partition == NULL) && (firmware_partition->flags && OTA_PARTITION_FLAG_NEW) && (firmware_exec_partition != NULL))
 {

 status = ota_partition_copy(firmware_staging_partition, firmware_exec_partition);//This will copy the image from the staging area to the destination address in NVS, then verify it with the CRC32

 if(status == MRT_STATUS_OK)
 {
 //TODO - JUMP TO firmware_exec_partition->image.addr
 }
 else
 {
 //TODO - handle error
 }

 }
 else
 {
 // No new update in staging area, jump to application
 //TODO - JUMP TO firmware_exec_partition->image.addr
 }

}

OTA XFer

ota_xfer.h/c provides an ota trasnfer utility. This utility can be used to manage the transfer of an OTA image from a server (or host) to the staging area. It will keep track of which blocks have been received, and which blocks are missing. It will also keep track of the state of the transfer, and verify the image with the provided CRC32.

#include "ota.h"
#include "ota_xfer.h"

ota_img_mgr_t img_mgr;
ota_xfer_t xfer;
ota_partition_t* firmware_partition = NULL;

//Callback when block data packet is received
void ota_firmware_block_callback(uint32_t offset, uint8_t *data, uint32_t len)
{
 ota_partition_write_image(firmware_partition, offset, data, len)

 ota_xfer_write_block(&xfer, offset, data, len);

 if(xfer.state == OTA_STATE_FINISHED)
 {
 Reset the device
 }

 //TODO request next block
}

//Call back when ota start packet is received
void ota_xfer_callback(const char* label, const char* strVersion, uint32_t size, uint32_t crc)
{
 //Kick off new transfer
 ota_xfer_init(&xfer, &ota, label, strVersion, size, crc);

 ota_xfer_set_state(&xfer, OTA_STATE_BULK);
}

int main(void)
{
 //Set up staging
 ota_img_mgr_init(&img_mgr);
 ota_dsk_t* stagingDsk = ota_img_mgr_add_dsk(&img_mgr, "staging", spi_flash_write, spi_flash_read);
 firmware_partition = ota_dsk_get_partition(stagingDsk, "firmware"); //This will return the firmware partition if it exists, or NULL if it does not exist

 if(firmware_partition == NULL)
 {
 //TODO - handle error
 }

 while(1)
 {
 if(xfer.state == OTA_STATE_BULK)
 {

 //Get next missing block
 uint32_t nextBlock = ota_xfer_get_next_missing_block(&xfer);
 if(nextBlock > -1)
 {
 request_image_block(nextBlock * ota->blockSize, ota->blockSize);
 }
 }
 }

}

PolyPacket Protocol

Included in this module is a PolyPacket [https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html] protocol descriptor file poly/ota-protocol.yml. This file can be used to generate a PolyPacket protocol for OTA transfers. The protocol can be used by itself or included in a larger protocol as a plugin.

Generating protocol service

For information on generating code for the ota protocol service, see the PolyPacket [https://mrt.readthedocs.io/en/latest/pages/polypacket/polypacket.html] documentation.

Pushing Images to device

The protocol descriptor includes Agent profiles for the otaHost and otaDevice. The otaDevice agent simply simulates a device that can receive OTA images, and can be used for testing. The otaHost agent can be used as a utility for reading partitions and trasnfering images to the device.

	Setup a simulated device with the otaDevice agent.

poly-packet -i ota-protocol.yml -a otaDevice -c tcp:8020

This will start a simulated device that will listen for connections on port 8020.

	Setup the otaHost agent to connect to the device. Run the following command in a new terminal window.

poly-packet -i ota-protocol.yml -a otaHost -c tcp:localhost:8020

This will start the otaHost agent and connect to the device.

[image: ../../../_images/poly.png]

	Run the discover command to get a list of partitions on the device.

[image: ../../../_images/discover.png]

	Use the flash command to transfer an image to the desired partition.

flash file: firmware.hex, version: 1.0.1, partition: spi-flash/firmware

[image: ../../../_images/flash.png]

Note

The CLI has tab complete which will show available commands and arguments

	Run the discover command again to verify that the image was transferred. The V flag on the partition indicates the device has verified the image with the CRC sent by the host.

[image: ../../../_images/verify.png]

 CRC

CRC

This module provides utility functions for calculating cyclic redundancy check (CRC) values. Right now only CRC32 is supported as it is the most common, but more will be added as needed

Use

The module can calculate CRCs on a buffer in one run, or in multiple chunks for larger buffers.

Single Chunk

#include "Utilities/CRC/crc32.h"

uint32_t crc = crc32(buffer, buffer_length);

Multiple Chunks

#include "Utilities/CRC/crc32.h"

crc32_ctx_t crc_ctx;

crc32_init(&crc_ctx);

crc32_update(&crc_ctx, buf0, buf0_len);
crc32_update(&crc_ctx, buf1, buf1_len);
crc32_update(&crc_ctx, buf2, buf2_len);

uint32_t crc = crc32_result(&crc_ctx);

 ByteFifo

ByteFifo

This module provides a simple byte byte_fifo in pure C. Unless there are heavy resource constraints, it is recommended to use the regular Fifo module.

byte_fifos can be defined staticly or initiallized dynamicly

dynamic example:

#include "Modules/Utilities/byte_fifo.h"

byte_fifo_t my_fifo;

uint8_t myBuf[64];

int main(void)
{
 //creates a byte_fifo that can store 64 uin16_t
 byte_fifo_init(&my_fifo, 64);

 uint16_t myData = 0;
 for(int i =0; i < 64; i++)
 {
 myData++;
 byte_fifo_push(myData); //
 }

 byte_fifo_pop_buf(&my_fifo, myBuf, 64);

 return 0;
}

static example:

#include "Modules/Utilities/byte_fifo.h"

byte_fifo_DEF(my_fifo, 64); //Expands to:
/*
uint8_t my_fifo_data[64];
byte_fifo_t my_fifo = {
 .mBuffer = my_fifo_data,
 .mHead = 0,
 .mTail = 0,
 .mMaxLen = 64,
 .mCount = 0,
};
*/

uint8_t myBuf[64];

int main(void)
{
 uint8_t myData = 0;
 for(int i =0; i < 64; i++)
 {
 myData++;
 byte_fifo_push(myData); //
 }

 byte_fifo_pop_buf(&my_fifo, myBuf, 64);

 return 0;
}

The main benefit of the static define is that it uses an array of ‘type’ to hold the data. This can help with debugging when the type is a struct.

 COBS

COBS

Module for Consistent Overhead Byte Stuffing
https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing

Consistent Overhead Byte Stuffing (COBS) is an algorithm for encoding data bytes that results in efficient, reliable, unambiguous packet framing regardless of packet content, thus making it easy for receiving applications to recover from malformed packets. It employs a particular byte value, typically zero, to serve as a packet delimiter (a special value that indicates the boundary between packets). When zero is used as a delimiter, the algorithm replaces each zero data byte with a non-zero value so that no zero data bytes will appear in the packet and thus be misinterpreted as packet boundaries.

cobs.c/cobs.h

These provide the basic cobs utility for encoding/decoding a buffer of data.

cobs_fifo.c / cobs_fifo.h

This is a fifo which uses cobs encoding to keep track of ‘frames’ inside of the fifo. a frame is a single buffer of data.

Working with frames

You can push/pop entire frames with the fifo

cobs_fifo_t fifo;
uint8_t buf[32]; //tmp buffer
int len;

cobs_fio_init(&fifo, 256); // create a cobs fifo that can store 256 bytes

uint8_t frameA[] = { 0x11, 0x22, 0x00, 0x33};
uint8_t frameB[] = { 0x12, 0x34};

cobs_fifo_push_frame(&fifo, frameA, 4); //push frame A into fifo. The frame is encoded as it is pushed into the fifo
//fifo->mNextLen is now 6. because frame A has 4 bytes + overhead byte and 1 byte for the delimiter

cobs_fifo_push_frame(&fifo, frameB, 2); //push frame B into fifo. The frame is encoded as it is pushed into the fifo
//fifo->mNextLen is still 6. because frame A is still the first frame in the buffer

len = cobs_pop_frame(&fifo, buf, 32); //pop and decode next frame from fifo
//fifo->mNextLen is now 4 because the next frame is frame B (2 bytes + 1 overhead + 1 delimiter)

len = cobs_pop_frame(&fifo, &buf[len], 32); //pop and decode next frame from fifo
//len will be the size of frame B decoded (2 bytes), buf = [0x12, 0x34]

 PolyPacket

PolyPacket

This Module Contains the back-end C code for protocols and services generated using the PolyPacket tool.

To generate services for this module, install the PolyPacket Tool:

pip3 install polypacket

Packing

This section describes how packets are serialized. Each packet contains a header and an optional data section. If a packet contains no fields (for instance an Ack) there is no data section and the Data Len is 0.

Header

	Byte

	0

	1

	2

	3

	4

	5

	6

	7

	Field

	typeId

	reserved

	Data Len

	Token

	Checksum

	Type

	uint8

	uint8

	uint16

	uint16

	uint16

When a packet contains fields, the fields are serialized as field blocks and placed in the data section.

Field Block

Simple (single value) fields contain a typeId and the value. The parser determines the type of the value by looking up the typeId in the field descriptor dictionary

	Byte

	0

	1: 1+ (n/127)

	
	

	
	

	
	

	Field

	typeId

	Array Len (n)

	Value[0]

	Value[1]

	Value[2]

	Type

	uint8

	varsize

	DataType

	DataType

	DataType

If the field is an array/ string, it contains a Length and all of the values present in the array. The Length indicates the number of values present in the array. Again we get the size of each value by looking up the typeId in the field descriptor dictionary

varSize

The varSize type stores a number between 0 and 2^28, but uses the least amount of bytes required. each byte contains 7 value bits, and one ‘continue’ bit. to read the value, you shift in the lower 7 bits, if the highest bit is set, then the value is continued on the second byte. This repeats until you get a 0 for the ‘continue’ bit.

/* Variable Size value packing
* These functions are used for packing and reading variable sized values
* This allows effecient packing of small values with the flexibility to still use larger values (up to 2^28). anything under 7bits is not affected
* each packed byte represents 7bits of the value, the most signifacant bit is used to indicate if the value is continued on the next byte
* example 0x0321 would be packed to [0xA1, 0x06]
* 0X21 & 0X80 = 0XA1
* 0x03 << 1 = 0x06 //We shift one bit for each byte to compensate for the bit used as the continuation flag
*/

int poly_var_size_pack(uint32_t val, uint8_t* buf)
{
uint8_t tmp = 0;
int idx =0;

do{
 tmp = val & 0x7F;
 val >>= 7;
 if(val > 0)
 {
 tmp |= 0x80;
 }

 buf[idx++] = tmp;

} while(val > 0);

return idx;
}

 Fifo

Fifo

This module provides a Generic ‘type’ fifo in pure C. It is not as effecient as a typed fifo, but it provides the flexibity of storing different types and structs.

Fifos can be defined staticly or initiallized dynamicly

dynamic example:

#include "Modules/Utilities/fifo.h"

fifo_t myFifo;

uint16_t myBuf[64];

int main(void)
{
 //creates a fifo that can store 64 uin16_t
 fifo_init(&myFifo, 64, sizeof(uint16_t));

 uint16_t myData = 0;
 for(int i =0; i < 64; i++)
 {
 myData++;
 fifo_push(&myData); //
 }

 fifo_pop_buf(&myFifo, myBuf, 64);

 return 0;
}

static example:

#include "Modules/Utilities/fifo.h"

FIFO_DEF(myFifo, 64, uint16_t); //Expands to:
/*
uint16_t myFifo_data[64];
fifo_t myFifo = {
 .mBuffer = myFifo_data,
 .mHead = 0,
 .mTail = 0,
 .mMaxLen = 64,
 .mCount = 0,
 .mObjSize = sizeof(uin16_t)
};
*/

uint16_t myBuf[64];

int main(void)
{
 uint16_t myData = 0;
 for(int i =0; i < 64; i++)
 {
 myData++;
 fifo_push(&myData); //
 }

 fifo_pop_buf(&myFifo, myBuf, 64);

 return 0;
}

Note

The main benefit of the static define is that it uses an array of ‘type’ to hold the data. This can help with debugging when the type is a struct.

 Devices

Devices

Devices

	Memory
	FL-S Series NOR Flash Memory

	SpiFlash

	Displays
	ST727A

	Device Driver for SSD1306 based oled displays

	ERCxxLcd

	Tri-Color E-ink display

	IO
	opex

	MotorDrivers
	STSPIN220

	Biometric
	ANV401 Fingerprint Sensor

	Sensors
	sht31

	LIS2DH12

	HTS221

	Device-LSM6D

	RF
	device-nrf24

	Power
	README

	stc3117

	BQ28Z

	Audio
	wm8731

	FPGA
	Spartan6

	RegDevice

 Memory

Memory

Memory

	FL-S Series NOR Flash Memory

	SpiFlash

 FL-S Series NOR Flash Memory

FL-S Series NOR Flash Memory

Infineon’s FL-S serial Flash memory provides fast quad SPI NOR Flash memory with densities from 128 Mb to 1 Gb for high-performance embedded systems. The FL-S family is AEC-Q100 qualified and supports PPAP for automotive customers at extended temperature ranges of -40°C to +125°C.

The FL-S family brings read speeds in single, dual, and quad I/O modes up to 133 MHz SDR (single data rate), and up to 80 MHz DDR (double data rate) delivering read bandwidth of up to 80 Mbps. Industry-leading programming performance (up to 1.08 Mbps) speeds manufacturing throughput and lowers programming costs dramatically.

 SpiFlash

SpiFlash

Datasheet: http://www.adestotech.com/wp-content/uploads/DS-AT25SF041_044.pdf

>Partnumber: AT25SF041-SHD-BDriver for spi flash device.

 Displays

Displays

Displays

	ST727A

	Device Driver for SSD1306 based oled displays

	ERCxxLcd

	Tri-Color E-ink display

 ST727A

ST727A

 Device Driver for SSD1306 based oled displays

Device Driver for SSD1306 based oled displays

 ERCxxLcd

ERCxxLcd

Datasheet: https://www.mikrocontroller.net/attachment/10245/SED1565.pdf

>Partnumber: Unkown
Requires: Modules/Utilities/GFX/MonoGfx

This module is a driver for the ERC monochromatic lcd displays driven by the SED15xx driver IC

This module handles mapping the pixels to the device pages/rows/columns in a logical order. So byte 0 of the buffer represents the first 8 pixels on the first row (top) of the display, and continues until it wraps at the end of the row

The lcd buffer stores pixel data ‘sideways’
0[4] = byte 0, bit 4

lcd ram:

0[0] 1[0] 2[0] 3[0] 4[0] 5[0] 6[0] 7[0] …..

0[1] 1[1] 2[1] 3[1] 4[1] 5[1] 6[1] 7[1] …..

0[2] 1[2] 2[2] 3[2] 4[2] 5[2] 6[2] 7[2] …..

0[3] 1[3] 2[3] 3[3] 4[3] 5[3] 6[3] 7[3] …..

0[4] 1[4] 2[4] 3[4] 4[4] 5[4] 6[4] 7[4] …..

0[5] 1[5] 2[5] 3[5] 4[5] 5[5] 6[5] 7[5] …..

0[6] 1[6] 2[6] 3[6] 4[6] 5[6] 6[6] 7[6] …..

0[7] 1[7] 2[7] 3[7] 4[7] 5[7] 6[7] 7[7] …..

local buffer:

0[7] 0[6] 0[5] 0[4] 0[3] 0[2] 0[1] 0[0] ,

1[7] 1[6] 1[5] 1[4] 1[3] 1[2] 1[1] 1[0] ,

2[7] 2[6] 2[5] 2[4] 2[3] 2[2] 2[1] 2[0] ,

3[7] 3[6] 3[5] 3[4] 3[3] 3[2] 3[1] 3[0] ,

4[7] 4[6] 4[5] 4[4] 4[3] 4[2] 4[1] 4[0] ,

5[7] 5[6] 5[5] 5[4] 5[3] 5[2] 5[1] 5[0] ,

6[7] 6[6] 6[5] 6[4] 6[3] 6[2] 6[1] 6[0] ,

7[7] 7[6] 7[5] 7[4] 7[3] 7[2] 7[1] 7[0] ,

So before writing to the device, we take a ‘block’ which is 8 pixels by 8 pixels,
and rotate it to match the lcd ram

 Tri-Color E-ink display

Tri-Color E-ink display

Datasheet: https://www.waveshare.com/w/upload/9/9e/1.54inch-e-paper-b-specification.pdf

>Partnumber:
Requires: Modules/Utilities/GFX/MonoGfx

driver for 1.5” tri-color e-ink display

 IO

IO

IO

	opex

 opex

opex

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C, SPI

	RegMap: Register Map

	Datasheet: https://www.st.com/resou… [https://www.st.com/resource/en/datasheet/stm8s003f3.pdf]

	DigiKey: 497-18052-2-ND [https://www.digikey.com/products/en?KeyWords=497-18052-2-ND]

	I2C Address: 0x42

Description

Driver for MCU running custom GPIO expander firmware

Updating Registers

If changes are made to the device.yml file, the code can be updated using mrtutils

mrt-device -i doc/device.yml -o .

Usage

Configure GPIO

opex_t exp;

io_init_i2c(&exp, I2C1); // Initialize expander on I2C1

io_gpio_cfg_t cfg;

cfg.mDIR = IO_GPIO_X_CFG_DIR_OUT;

io_cfg_gpio(&exp, 0, &cfg); // Configure GPIO 0 to be an output

cfg.mDIR = IO_GPIO_X_CFG_DIR_IN;
cfg.mPP = 1;
cfg.mIRQ = IO_GPIO_X_CFG_IRQ_FALLING

io_cfg_gpio(&exp, 1, &cfg); // Configure GPIO 1 to be an input with PUSH/Pull ON, and a falling trigger for IRQ

io_set_gpio(&exp, 1, LOW); // Sets GPIO output to LOW. Since it is configured as an input, this enables the internal pulldown resistor

Set GPIO

io_set_gpio(&exp, 0, HIGH); // Sets GPIO 0 High

Configure IRQ

io_cfg_irq(&exp, IO_IRQ_POLAR_LOW, 12) //Configure IRQ to pull GPIO 12 low when triggered

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	GPIO_IN

	0x00

	uint32

	R

	0x00000000

	Input values for gpio 0-25

	GPIO_OUT

	0x04

	uint32

	RW

	0x00000000

	Output values for gpio 0-15

	GPIO_DDR

	0x08

	uint32

	R

	0x00000000

	Direction Register for GPIO

	IRQ_SRC

	0x0C

	uint32

	R

	0x00000000

	latching Interrupt source mask. indicates souce of IRQ resets on read

	ADC_0_VAL

	0x10

	uint16

	R

	0x0000

	Output of ADC 0

	ADC_1_VAL

	0x12

	uint16

	R

	0x0000

	Output of ADC 1

	ADC_2_VAL

	0x14

	uint16

	R

	0x0000

	Output of ADC 2

	ADC_3_VAL

	0x16

	uint16

	R

	0x0000

	Output of ADC 3

	ADC_4_VAL

	0x18

	uint16

	R

	0x0000

	Output of ADC 4

	PWM_0_VAL

	0x1A

	uint16

	W

	0x0000

	PWM value for ch 0

	PWM_1_VAL

	0x1C

	uint16

	W

	0x0000

	PWM value for ch 1

	PWM_2_VAL

	0x1E

	uint16

	W

	0x0000

	PWM value for ch 2

	PWM_3_VAL

	0x20

	uint16

	W

	0x0000

	PWM value for ch 3

	PWM_4_VAL

	0x22

	uint16

	W

	0x0000

	PWM value for ch 4

	PWM_5_VAL

	0x24

	uint16

	W

	0x0000

	PWM value for ch 5

	GPIO_0_CFG

	0x26

	uint8

	RW

	0x00

	Configuration for GPIO 0

	GPIO_1_CFG

	0x27

	uint8

	RW

	0x00

	Configuration for GPIO 1

	GPIO_2_CFG

	0x28

	uint8

	RW

	0x00

	Configuration for GPIO 2

	GPIO_3_CFG

	0x29

	uint8

	RW

	0x00

	Configuration for GPIO 3

	GPIO_4_CFG

	0x2A

	uint8

	RW

	0x00

	Configuration for GPIO 4

	GPIO_5_CFG

	0x2B

	uint8

	RW

	0x00

	Configuration for GPIO 5

	GPIO_6_CFG

	0x2C

	uint8

	RW

	0x00

	Configuration for GPIO 6

	GPIO_7_CFG

	0x2D

	uint8

	RW

	0x00

	Configuration for GPIO 7

	GPIO_8_CFG

	0x2E

	uint8

	RW

	0x00

	Configuration for GPIO 8

	GPIO_9_CFG

	0x2F

	uint8

	RW

	0x00

	Configuration for GPIO 9

	GPIO_10_CFG

	0x30

	uint8

	RW

	0x00

	Configuration for GPIO 10

	GPIO_11_CFG

	0x31

	uint8

	RW

	0x00

	Configuration for GPIO 11

	GPIO_12_CFG

	0x32

	uint8

	RW

	0x00

	Configuration for GPIO 12

	GPIO_13_CFG

	0x33

	uint8

	RW

	0x00

	Configuration for GPIO 13

	GPIO_14_CFG

	0x34

	uint8

	RW

	0x00

	Configuration for GPIO 14

	GPIO_15_CFG

	0x35

	uint8

	RW

	0x00

	Configuration for GPIO 15

	GPIO_16_CFG

	0x36

	uint8

	RW

	0x00

	Configuration for GPIO 16

	GPIO_17_CFG

	0x37

	uint8

	RW

	0x00

	Configuration for GPIO 17

	GPIO_18_CFG

	0x38

	uint8

	RW

	0x00

	Configuration for GPIO 18

	GPIO_19_CFG

	0x39

	uint8

	RW

	0x00

	Configuration for GPIO 19

	GPIO_20_CFG

	0x3A

	uint8

	RW

	0x00

	Configuration for GPIO 20

	GPIO_21_CFG

	0x3B

	uint8

	RW

	0x00

	Configuration for GPIO 21

	GPIO_22_CFG

	0x3C

	uint8

	RW

	0x00

	Configuration for GPIO 22

	GPIO_23_CFG

	0x3D

	uint8

	RW

	0x00

	Configuration for GPIO 23

	GPIO_24_CFG

	0x3E

	uint8

	RW

	0x00

	Configuration for GPIO 24

	GPIO_25_CFG

	0x3F

	uint8

	RW

	0x00

	Configuration for GPIO 25

	IRQ_CFG

	0x40

	uint16

	RW

	0x0000

	IRQ Configuration

	ADC_0_CFG

	0x42

	uint16

	RW

	0x0000

	Configuration for ADC 0

	ADC_1_CFG

	0x44

	uint16

	RW

	0x0000

	Configuration for ADC 1

	ADC_2_CFG

	0x46

	uint16

	RW

	0x0000

	Configuration for ADC 2

	ADC_3_CFG

	0x48

	uint16

	RW

	0x0000

	Configuration for ADC 3

	ADC_4_CFG

	0x4A

	uint16

	RW

	0x0000

	Configuration for ADC 4

	PWM_CONFIG

	0x4C

	uint32

	RW

	0x00000000

	Configuration for PWM

	WHO_AM_I

	0x50

	uint8

	RW

	0xAB

	Device ID

	VERSION

	0x51

	uint32

	RW

	0x00000000

	Version of firmware

	EEPROM_MEM

	0x70

	uint8

	RW

	0x00

	Start address of EEPROM memory on stm8. User can read/write up to 128 bytes starting at this address

Registers

GPIO_IN

	Address:

	[0x00]

Input values for gpio 0-25

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	GPIO_IN

GPIO_OUT

	Address:

	[0x04]

Output values for gpio 0-15

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	GPIO_OUT

GPIO_DDR

	Address:

	[0x08]

Direction Register for GPIO

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	GPIO_DDR

IRQ_SRC

	Address:

	[0x0C]

latching Interrupt source mask. indicates souce of IRQ resets on read

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	IRQ_SRC

Fields

	IRQ_SRC:

	Source of IRQ

	Name

	Value

	Description

	GPIO_0

	x01

	IRQ triggered by GPIO0

	ADC_0

	x4000000

	IRQ triggered by ADC0

	ADC_1

	x8000000

	IRQ triggered by ADC1

	ADC_2

	x10000000

	IRQ triggered by ADC2

	ADC_3

	x20000000

	IRQ triggered by ADC3

	ADC_4

	x40000000

	IRQ triggered by ADC4

ADC_n_VAL

	Address:

	[—-]

Output of ADC n

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	ADC_0_VAL

PWM_n_VAL

	Address:

	[—-]

PWM value for ch n

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	PWM_0_VAL

GPIO_n_CFG

	Address:

	[—-]

Configuration for GPIO n

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	DIR

	PP

	LL

	IRQ

	ALT

	EN

Flags

	PP:

	Enables Push/Pull on output, and Pull-up on input

	ALT:

	Indicates that GPIO is disabled because pin is being used for an alternate function (PWM, ADC, etc)

	EN:

	Enables GPIO

Fields

	DIR:

	Pin Direction

	Name

	Value

	Description

	IN

	b0

	GPIO is an input

	OUT

	b1

	GPIO is an output

	LL:

	Low Level

	Name

	Value

	Description

	LOW

	b0

	Low level output

	HIGH

	b1

	

	IRQ:

	Interrupt selection

	Name

	Value

	Description

	NONE

	b00

	No interrupt

	RISING

	b01

	Trigger on Rising

	FALLING

	b10

	Trigger on falling

	ANY

	b11

	Trigger on any

IRQ_CFG

	Address:

	[0x40]

IRQ Configuration

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	Enabled

	Polarity

	Output

Flags

	Enabled:

	Enables IRQ signal on selected GPIO

Fields

	Polarity:

	Sets polarity of IRQ

	Name

	Value

	Description

	ACTIVE_HIGH

	b1

	GPIO is high when IRQ is pending

	ACTIVE_LOW

	b0

	GPIO is low when IRQ is pending

	Output:

	Selects the GPIO to use for IRQ

ADC_n_CFG

	Address:

	[—-]

Configuration for ADC n

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	Treshold

	IRQ

	EN

Flags

	EN:

	Enables ADC Channel

Fields

	Treshold:

	IRQ threshold for ADC channel

	IRQ:

	Interrupt setting for ADC channel

	Name

	Value

	Description

	NONE

	b00

	No interrupt

	RISING

	b01

	Trigger on Rising

	FALLING

	b10

	Trigger on falling

	ANY

	b11

	Trigger on any

PWM_CONFIG

	Address:

	[0x4C]

Configuration for PWM

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	Period

	Prescaler

	CH7_Enable

	CH6_Enable

	CH5_Enable

	CH4_Enable

	CH3_Enable

	CH2_Enable

	CH1_Enable

	CH0_Enable

Flags

	CH0_Enable:

	Enables PWM channel 0

	CH1_Enable:

	Enables PWM channel 1

	CH2_Enable:

	Enables PWM channel 2

	CH3_Enable:

	Enables PWM channel 3

	CH4_Enable:

	Enables PWM channel 4

	CH5_Enable:

	Enables PWM channel 5

	CH6_Enable:

	Enables PWM channel 6

	CH7_Enable:

	Enables PWM channel 7

Fields

	Period:

	Period for PWM signals

	Prescaler:

	Prescaler for PWM, using 16Mhz clock

	Name

	Value

	Description

	PRESCALER_1

	b0000

	divide clock by 1 (16Mhz)

	PRESCALER_2

	b0001

	divide clock by 2 (8Mhz)

	PRESCALER_4

	b0010

	divide clock by 4 (4Mhz)

	PRESCALER_8

	b0011

	divide clock by 8 (2Mhz)

	PRESCALER_16

	b0100

	divide clock by 16 (1Mhz)

	PRESCALER_32

	b0101

	divide clock by 32 (500Khz)

	PRESCALER_64

	b0110

	divide clock by 64 (250Khz)

	PRESCALER_128

	b0111

	divide clock by 128 (125Khz)

	PRESCALER_256

	b1000

	divide clock by 256 (62.5 Khz)

	PRESCALER_512

	b1001

	divide clock by 512 (31.25 Khz)

	PRESCALER_1024

	b1010

	divide clock by 1024 (1.5625 KHz)

	PRESCALER_2048

	b1011

	divide clock by 2048 ()

	PRESCALER_4096

	b1100

	divide clock by 4096 ()

	PRESCALER_8192

	b1101

	divide clock by 8192 ()

	PRESCALER_16384

	b1110

	divide clock by 16384 ()

	PRESCALER_32768

	b1111

	divide clock by 32768 ()

WHO_AM_I

	Address:

	[0x50]

	Default:

	[0xAB]

Device ID

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ID:

	ID of device

	Name

	Value

	Description

	STM8S003F3

	x70

	20 pin variant

	STM8S003K3

	x71

	32 pin variant

VERSION

	Address:

	[0x51]

Version of firmware

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	MAJOR

	MINOR

	PATCH

	BUILD

Fields

	MAJOR:

	Major Version

	MINOR:

	Major Version

	PATCH:

	Major Version

	BUILD:

	Major Version

EEPROM_MEM

	Address:

	[0x70]

Start address of EEPROM memory on stm8. User can read/write up to 128 bytes starting at this address

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	EEPROM_MEM

 MotorDrivers

MotorDrivers

MotorDrivers

	STSPIN220

 STSPIN220

STSPIN220

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: GPIO

	RegMap: Register Map

	Datasheet: https://www.st.com/resou… [https://www.st.com/resource/en/datasheet/stspin220.pdf]

	DigiKey: 497-16602-1-ND [https://www.digikey.com/products/en?KeyWords=497-16602-1-ND]

Description

Low voltage stepper motor driver

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	
	
	
	
	
	

Registers

 Biometric

Biometric

Biometric

	ANV401 Fingerprint Sensor

 ANV401 Fingerprint Sensor

ANV401 Fingerprint Sensor

This is the device driver for the ANV401 capacitive fingerprint sensor module.

Example Code

This example is based on an stm32 platform using huart1 for the device, and the irq and reset signals labeled as FINGER_EXTI and FINER_RST

/* Includes --*/
#include "main.h"
#include "Devices/Biometric/ANV401-FingerprintSensor/anv401.h"

/* Private variables ---*/
anv401_t fpSensor;
volatile bool fpPresent = false;
volatile bool addNewUser = false;

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{

 if(GPIO_Pin == FINGER_EXTI_Pin)
 {
 fpPresent = true;
 }

 if(GPIO_Pin == NEW_USER_BUTTON_Pin)
 {
 addNewUser = true;
 }

}

int main(void)
{
 /* Initialization of HAL, UART, GPIO etc.. */

 //Initialize driver
 anv401_init(&fpSensor, MRT_GPIO(FINGER_EXTI), MRT_GPIO(FINGER_RST)));

 while(1)
 {
 if(addNewUser)
 {
 //Add whoever is touching the sensor as a new user with permission level 3
 anv401_add_user(&fpSensor, 3);

 addNewUser = false;
 }

 if(fpPresent)
 {
 anv401_user_t user = anv401_compare_fingerprint(&fpSensor);

 if(user.mId == ANV401_USER_NONE)
 {
 printf("No Matching User found, Access denied");
 }
 else
 {
 printf("User identified\nId: %04X\nPerm: %d", user.mId, user.mPerm);
 }

 fpPresent = false;
 }
 }

}

When the NEW_USER_BUTTON is pressed, the finger currently touching the sensor would be added as a new user. Whenever a finger touches the sensor, it will toggle the EXTI/IRQ signal, and then we can look for a match

 Sensors

Sensors

Sensors

	sht31

	LIS2DH12

	HTS221

	Device-LSM6D

 sht31

sht31

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C

	RegMap: Register Map

	Datasheet: https://media.digikey.co… [https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf]

	DigiKey: 1649-1011-1-ND [https://www.digikey.com/products/en?KeyWords=1649-1011-1-ND]

	I2C Address: 0x44

Description

description

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	
	
	
	
	
	

Registers

 LIS2DH12

LIS2DH12

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C,SPI

	RegMap: Register Map

	Datasheet: http://www.st.com/conten… [http://www.st.com/content/ccc/resource/technical/document/datasheet/12/c0/5c/36/b9/58/46/f2/DM00091513.pdf/files/DM00091513.pdf/jcr:content/translations/en.DM00091513.pdf]

	DigiKey: 497-14851-1-ND [https://www.digikey.com/products/en?KeyWords=497-14851-1-ND]

	I2C Address: 0x32

Description

MEMS Digital Output Motion Sensor Ultra Low-Power High Performance 3-Axis “Femto” Accelerometer

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	STATUS_AUX

	0x07

	uint8

	R

	0x00

	n/a

	OUT_TEMP

	0x0C

	uint16

	R

	0x0000

	Temperature sensor data

	WHO_AM_I

	0x0F

	uint8

	R

	0x33

	Device identification register

	CTRL0

	0x1E

	uint8

	RW

	0x10

	Control Register 0

	TEMP_CFG

	0x1F

	uint8

	RW

	0x07

	n/a

	CTRL1

	0x20

	uint8

	RW

	0x07

	Control Register 1

	CTRL2

	0x21

	uint8

	RW

	0x00

	Control Register 2

	CTRL3

	0x22

	uint8

	RW

	0x00

	Control Register 3

	CTRL4

	0x23

	uint8

	RW

	0x00

	Control Register 4

	CTRL5

	0x24

	uint8

	RW

	0x00

	Control Register 5

	CTRL6

	0x25

	uint8

	RW

	0x00

	Control Register 6

	REFERENCE

	0x26

	uint8

	RW

	0x00

	Reference value for interrupt generation

	STATUS

	0x27

	uint8

	R

	0x00

	n/a

	OUT_X

	0x28

	uint16

	R

	0x0000

	X-axis acceleration data

	OUT_Y

	0x2A

	uint16

	R

	0x0000

	Y-axis acceleration data

	OUT_Z

	0x2C

	uint16

	R

	0x0000

	Z-axis acceleration data

	FIFO_CTRL

	0x2E

	uint8

	RW

	0x00

	Fifo Control register

	FIFO_SRC

	0x2F

	uint8

	R

	0x00

	Fifo status register

	INT1_CFG

	0x30

	uint8

	RW

	0x00

	Interrupt 1 config register

	INT1_SRC

	0x31

	uint8

	R

	0x00

	Interrupt 1 source register

	INT1_THS

	0x32

	uint8

	RW

	0x00

	Interrupt 1 threshold register

	INT1_DURATION

	0x33

	uint8

	RW

	0x00

	Interrupt 1 duration register

	INT2_CFG

	0x34

	uint8

	RW

	0x00

	Interrupt 2 config register

	INT2_SRC

	0x35

	uint8

	R

	0x00

	Interrupt 2 source register

	INT2_THS

	0x36

	uint8

	RW

	0x00

	Interrupt 2 threshold register

	INT2_DURATION

	0x37

	uint8

	RW

	0x00

	Interrupt 2 duration register

	CLICK_CFG

	0x38

	uint8

	RW

	0x00

	Click config

	CLICK_SRC

	0x39

	uint8

	R

	0x00

	Click source

	CLICK_THS

	0x3A

	uint8

	RW

	0x00

	Click Threshold

	TIME_LIMIT

	0x3B

	uint8

	RW

	0x00

	Click time limit

	TIME_LATENCY

	0x3C

	uint8

	RW

	0x00

	Click time latency

	TIME_WINDOW

	0x3D

	uint8

	RW

	0x00

	Click time window

	ACT_THS

	0x3E

	uint8

	RW

	0x00

	Activity threshold

	ACT_DUR

	0x3F

	uint8

	RW

	0x00

	Activity duration

Registers

STATUS_AUX

	Address:

	[0x07]

n/a

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	STATUS_AUX

OUT_TEMP

	Address:

	[0x0C]

Temperature sensor data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	OUT_TEMP

WHO_AM_I

	Address:

	[0x0F]

	Default:

	[0x33]

Device identification register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	WHO_AM_I:

	Device identification register

CTRL0

	Address:

	[0x1E]

	Default:

	[0x10]

Control Register 0

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL0:

	Control Register 0

TEMP_CFG

	Address:

	[0x1F]

	Default:

	[0x07]

n/a

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TEMP_CFG:

	n/a

CTRL1

	Address:

	[0x20]

	Default:

	[0x07]

Control Register 1

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	LOW_PWR

	Z_EN

	Y_EN

	X_EN

Flags

	X_EN:

	X-axis enable

	Y_EN:

	Y-axis enable

	Z_EN:

	Z-axis enable

	LOW_PWR:

	Low-power mode enable

Fields

	ODR:

	Data rate selection

	Name

	Value

	Descriptions

	PWR_DWN

	b0000

	Power-down mode

	1Hz

	b0001

	HR/ Normal / Low-power mode (1 Hz)

	10Hz

	b1000

	HR/ Normal / Low-power mode (10 Hz)

	25Hz

	b1001

	HR/ Normal / Low-power mode (25 Hz)

	50Hz

	b1000000

	HR/ Normal / Low-power mode (50 Hz)

	100Hz

	b1000001

	HR/ Normal / Low-power mode (100 Hz)

	200Hz

	b1001000

	HR/ Normal / Low-power mode (200 Hz)

	400Hz

	b1001001

	HR/ Normal / Low-power mode (400 Hz)

	1620Hz

	b0111

	Low-power mode (1.620 kHz)

	5376Hz

	b0111

	HR/ Normal (1.344 kHz) / Low-power mode (5.376 kHz)

CTRL2

	Address:

	[0x21]

	Default:

	[0x00]

Control Register 2

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	FDS

	HPCLICK

	HP_IA2

	HP_IA1

Flags

	HP_IA1:

	High-pass filter enabled for AOI function on Interrupt 1

	HP_IA2:

	High-pass filter enabled for AOI function on Interrupt 2

	HPCLICK:

	High-pass filter enabled for Click function

	FDS:

	Filtered data selection

CTRL3

	Address:

	[0x22]

	Default:

	[0x00]

Control Register 3

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL3:

	Control Register 3

CTRL4

	Address:

	[0x23]

	Default:

	[0x00]

Control Register 4

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL4:

	Control Register 4

CTRL5

	Address:

	[0x24]

	Default:

	[0x00]

Control Register 5

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL5:

	Control Register 5

CTRL6

	Address:

	[0x25]

	Default:

	[0x00]

Control Register 6

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL6:

	Control Register 6

REFERENCE

	Address:

	[0x26]

	Default:

	[0x00]

Reference value for interrupt generation

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	REFERENCE:

	Reference value for interrupt generation

STATUS

	Address:

	[0x27]

n/a

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	STATUS

OUT_X

	Address:

	[0x28]

X-axis acceleration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	OUT_X

OUT_Y

	Address:

	[0x2A]

Y-axis acceleration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	OUT_Y

OUT_Z

	Address:

	[0x2C]

Z-axis acceleration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	OUT_Z

FIFO_CTRL

	Address:

	[0x2E]

	Default:

	[0x00]

Fifo Control register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	FIFO_CTRL:

	Fifo Control register

FIFO_SRC

	Address:

	[0x2F]

Fifo status register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	FIFO_SRC

INT1_CFG

	Address:

	[0x30]

	Default:

	[0x00]

Interrupt 1 config register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT1_CFG:

	Interrupt 1 config register

INT1_SRC

	Address:

	[0x31]

Interrupt 1 source register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	INT1_SRC

INT1_THS

	Address:

	[0x32]

	Default:

	[0x00]

Interrupt 1 threshold register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT1_THS:

	Interrupt 1 threshold register

INT1_DURATION

	Address:

	[0x33]

	Default:

	[0x00]

Interrupt 1 duration register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT1_DURATION:

	Interrupt 1 duration register

INT2_CFG

	Address:

	[0x34]

	Default:

	[0x00]

Interrupt 2 config register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT2_CFG:

	Interrupt 2 config register

INT2_SRC

	Address:

	[0x35]

Interrupt 2 source register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	INT2_SRC

INT2_THS

	Address:

	[0x36]

	Default:

	[0x00]

Interrupt 2 threshold register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT2_THS:

	Interrupt 2 threshold register

INT2_DURATION

	Address:

	[0x37]

	Default:

	[0x00]

Interrupt 2 duration register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	INT2_DURATION:

	Interrupt 2 duration register

CLICK_CFG

	Address:

	[0x38]

	Default:

	[0x00]

Click config

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CLICK_CFG:

	Click config

CLICK_SRC

	Address:

	[0x39]

Click source

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	CLICK_SRC

CLICK_THS

	Address:

	[0x3A]

	Default:

	[0x00]

Click Threshold

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CLICK_THS:

	Click Threshold

TIME_LIMIT

	Address:

	[0x3B]

	Default:

	[0x00]

Click time limit

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TIME_LIMIT:

	Click time limit

TIME_LATENCY

	Address:

	[0x3C]

	Default:

	[0x00]

Click time latency

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TIME_LATENCY:

	Click time latency

TIME_WINDOW

	Address:

	[0x3D]

	Default:

	[0x00]

Click time window

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TIME_WINDOW:

	Click time window

ACT_THS

	Address:

	[0x3E]

	Default:

	[0x00]

Activity threshold

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ACT_THS:

	Activity threshold

ACT_DUR

	Address:

	[0x3F]

	Default:

	[0x00]

Activity duration

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ACT_DUR:

	Activity duration

 HTS221

HTS221

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C

	RegMap: Register Map

	Datasheet: https://www.st.com/conte… [https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.DM00116291.pdf]

	DigiKey: 497-15382-1-ND [https://www.digikey.com/products/en?KeyWords=497-15382-1-ND]

	I2C Address: 0xBE

Description

Humidity and Temperature Sensor

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	WHO_AM_I

	0x0F

	uint8

	R

	0xBC

	Id Register

	AV_CONF

	0x10

	uint8

	RW

	0x1B

	Humidity and temperature resolution mode

	CTRL1

	0x20

	uint8

	RW

	0x00

	Control register 1

	CTRL2

	0x21

	uint8

	RW

	0x00

	Control register 2

	CTRL3

	0x22

	uint8

	RW

	0x00

	Control register 3

	STATUS

	0x27

	uint8

	R

	0x00

	Status register

	HUMIDITY_OUT

	0x28

	int16

	R

	0x0000

	Relative humidity data

	TEMP_OUT

	0x2A

	int16

	R

	0x0000

	Temperature data

	H0_rH_x2

	0x30

	uint8

	R

	0x00

	Calibration data

	H1_rH_x2

	0x31

	uint8

	R

	0x00

	Calibration data

	T0_DEGC_x8

	0x32

	uint8

	R

	0x00

	Calibration data

	T1_DEGC_x8

	0x33

	uint8

	R

	0x00

	Calibration data

	T1T0_MSB

	0x35

	uint8

	R

	0x00

	Calibration data

	H0_T0_OUT

	0x36

	int16

	R

	0x0000

	Calibration data

	H1_T0_OUT

	0x3A

	int16

	R

	0x0000

	Calibration data

	T0_OUT

	0x3C

	int16

	R

	0x0000

	Calibration data

	T1_OUT

	0x3E

	int16

	R

	0x0000

	Calibration data

Registers

WHO_AM_I

	Address:

	[0x0F]

	Default:

	[0xBC]

Id Register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	WHO_AM_I:

	Id Register

AV_CONF

	Address:

	[0x10]

	Default:

	[0x1B]

Humidity and temperature resolution mode

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	AVGT

	AVGH

Fields

	AVGH:

	Selects the number of Humidity samples to average for data output

	Name

	Value

	Descriptions

	4

	b000

	4 samples

	8

	b001

	8 samples

	16

	b010

	16 samples

	32

	b011

	32 samples

	64

	b100

	64 samples

	128

	b101

	128 samples

	256

	b110

	256 samples

	512

	b111

	512 samples

	AVGT:

	Selects the number of Temperature samples to average for data output

	Name

	Value

	Descriptions

	2

	b000

	2 samples

	4

	b001

	4 samples

	8

	b010

	8 samples

	16

	b011

	16 samples

	32

	b100

	32 samples

	64

	b101

	64 samples

	128

	b110

	128 samples

	256

	b111

	256 samples

CTRL1

	Address:

	[0x20]

	Default:

	[0x00]

Control register 1

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	BDU

	ODR

Flags

	PD:

	power down mode

	BDU:

	Block Data update. Prevents update until LSB of data is read

Fields

	ODR:

	Selects the Output rate for the sensor data

	Name

	Value

	Descriptions

	ONESHOT

	b00

	readings must be requested

	1HZ

	b01

	1 hz sampling

	7HZ

	b10

	7 hz sampling

	12_5HZ

	b11

	12.5 hz sampling

CTRL2

	Address:

	[0x21]

	Default:

	[0x00]

Control register 2

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	HEATER

	ONESHOT

Flags

	BOOT:

	Reboot memory content

	HEATER:

	Enable intenal heating element

	ONESHOT:

	Start conversion for new data

CTRL3

	Address:

	[0x22]

	Default:

	[0x00]

Control register 3

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CTRL3:

	Control register 3

STATUS

	Address:

	[0x27]

	Default:

	[0x00]

Status register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	HUM_READY

	TEMP_READY

Flags

	TEMP_READY:

	indicates that a temperature reading is ready

	HUM_READY:

	indicates that a humidity reading is ready

HUMIDITY_OUT

	Address:

	[0x28]

Relative humidity data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	HUM_OUT:

	Current ADC reading for humidity sensor

TEMP_OUT

	Address:

	[0x2A]

Temperature data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TEMP_OUT:

	Current ADC reading for temperature sensor

H0_rH_x2

	Address:

	[0x30]

Calibration data

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	H0_rH_x2

H1_rH_x2

	Address:

	[0x31]

Calibration data

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	H1_rH_x2

T0_DEGC_x8

	Address:

	[0x32]

Calibration data

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	T0_DEGC_x8

T1_DEGC_x8

	Address:

	[0x33]

Calibration data

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	T1_DEGC_x8

T1T0_MSB

	Address:

	[0x35]

Calibration data

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	T1T0_MSB

H0_T0_OUT

	Address:

	[0x36]

Calibration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	H0_T0_OUT

H1_T0_OUT

	Address:

	[0x3A]

Calibration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	H1_T0_OUT

T0_OUT

	Address:

	[0x3C]

Calibration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	T0_OUT

T1_OUT

	Address:

	[0x3E]

Calibration data

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	T1_OUT

 Device-LSM6D

Device-LSM6D

device driver for lsm6d iNEMO inertial module (Accelerometer and Gyroscope)

 RF

RF

RF

	device-nrf24

 device-nrf24

device-nrf24

driver for nrf24 transceiver

 Power

Power

Power

	README

	stc3117

	BQ28Z

 README

README

This README would normally document whatever steps are necessary to get your application up and running.

What is this repository for?

	Quick summary

	Version

	Learn Markdown [https://bitbucket.org/tutorials/markdowndemo]

How do I get set up?

	Summary of set up

	Configuration

	Dependencies

	Database configuration

	How to run tests

	Deployment instructions

Contribution guidelines

	Writing tests

	Code review

	Other guidelines

Who do I talk to?

	Repo owner or admin

	Other community or team contact

 stc3117

stc3117

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C

	RegMap: Register Map

	Datasheet: https://www.st.com/conte… [https://www.st.com/content/ccc/resource/technical/document/datasheet/ea/b5/01/6e/dd/f0/49/3e/DM00105047.pdf/files/DM00105047.pdf/jcr:content/translations/en.DM00105047.pdf]

	DigiKey: 497-15387-1-ND [https://www.digikey.com/products/en?KeyWords=497-15387-1-ND]

	I2C Address: 0xE0

Description

Gas gauge IC with battery charger control

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	MODE

	0x00

	uint8

	RW

	0x00

	Mode register

	CTRL

	0x01

	uint8

	RW

	0x00

	Control and status register

	SOC

	0x02

	uint16

	RW

	0x0000

	Battery SOC (LSB = 1/512 %)

	COUNTER

	0x04

	uint16

	R

	0x0000

	Number of conversions

	CURRENT

	0x06

	uint16

	R

	0x0000

	Battery current

	VOLTAGE

	0x08

	uint16

	R

	0x0000

	Battery voltage (LSB = 2.2 mV)

	TEMPERATURE

	0x0A

	uint8

	R

	0x00

	Temperature in degrees C (LSB = 1deg C)

	AVG_CURRENT

	0x0B

	uint16

	RW

	0x0000

	Battery average current or SOC change rate

	OCV

	0x0D

	uint16

	RW

	0x0000

	OCV register (LSV = 0.55 mV)

	CC_CNF

	0x0F

	uint16

	RW

	0x018B

	Battery average current or SOC change rate

	VM_CNF

	0x11

	uint16

	RW

	0x0141

	Voltage gas gauge algorithm parameter

	ALARM_SOC

	0x13

	uint8

	RW

	0x02

	SOC alarm level in (LSB = 0.5%)

	ALARM_VOLTAGE

	0x14

	uint8

	RW

	0xAA

	Battery low voltage alarm level (LSB = 17.6 mV)

	CURRENT_THRES

	0x15

	uint8

	RW

	0x0A

	Current threshold for current monitoring (LSB = 47.04 uV)

	CMONIT_COUNT

	0x16

	uint8

	R

	0x78

	Current monitoring counter

	CMONIT_MAX

	0x17

	uint8

	RW

	0x78

	Maximum counter value for current monitoring

	ID

	0x18

	uint8

	R

	0x16

	Part type ID = 16h

	CC_ADJ

	0x1B

	uint16

	R

	0x0000

	Coulomb counter adjustment register

	VM_ADJ

	0x1D

	uint16

	R

	0x0000

	Voltage mode adjustment register

Registers

MODE

	Address:

	[0x00]

Mode register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	FORCE_VM

	FORCE_CC

	GG_RUN

	ALM_ENA

	FORCE_CD

	BIBATD_PU

	VMODE

Flags

	VMODE:

	Power saving voltage mode

	BIBATD_PU:

	BATD internal pull-up enable

	FORCE_CD:

	Force CD output high

	ALM_ENA:

	Enable Alarm function

	GG_RUN:

	creates a flag at bit 1 of the DUMMY register

	FORCE_CC:

	Force the relaxation timer to switch to the Coulomb counter (CC) state

	FORCE_VM:

	Force the relaxation timer to switch to voltage mode (VM) state

CTRL

	Address:

	[0x01]

Control and status register

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	CTRL

SOC

	Address:

	[0x02]

Battery SOC (LSB = 1/512 %)

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	SOC:

	Battery SOC (LSB = 1/512 %)

COUNTER

	Address:

	[0x04]

	Default:

	[0x0000]

Number of conversions

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	COUNTER:

	Number of conversions

CURRENT

	Address:

	[0x06]

	Default:

	[0x0000]

Battery current

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CURRENT:

	Battery current

VOLTAGE

	Address:

	[0x08]

	Default:

	[0x0000]

Battery voltage (LSB = 2.2 mV)

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	VOLTAGE:

	Battery voltage (LSB = 2.2 mV)

TEMPERATURE

	Address:

	[0x0A]

	Default:

	[0x00]

Temperature in degrees C (LSB = 1deg C)

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	TEMPERATURE:

	Temperature in degrees C (LSB = 1deg C)

AVG_CURRENT

	Address:

	[0x0B]

	Default:

	[0x0000]

Battery average current or SOC change rate

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AVG_CURRENT:

	Battery average current or SOC change rate

OCV

	Address:

	[0x0D]

	Default:

	[0x0000]

OCV register (LSV = 0.55 mV)

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	OCV:

	OCV register (LSV = 0.55 mV)

CC_CNF

	Address:

	[0x0F]

	Default:

	[0x018B]

Battery average current or SOC change rate

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CC_CNF:

	Battery average current or SOC change rate

VM_CNF

	Address:

	[0x11]

	Default:

	[0x0141]

Voltage gas gauge algorithm parameter

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	VM_CNF:

	Voltage gas gauge algorithm parameter

ALARM_SOC

	Address:

	[0x13]

	Default:

	[0x02]

SOC alarm level in (LSB = 0.5%)

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ALARM_SOC:

	SOC alarm level in (LSB = 0.5%)

ALARM_VOLTAGE

	Address:

	[0x14]

	Default:

	[0xAA]

Battery low voltage alarm level (LSB = 17.6 mV)

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ALARM_VOLTAGE:

	Battery low voltage alarm level (LSB = 17.6 mV)

CURRENT_THRES

	Address:

	[0x15]

	Default:

	[0x0A]

Current threshold for current monitoring (LSB = 47.04 uV)

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CURRENT_THRES:

	Current threshold for current monitoring (LSB = 47.04 uV)

CMONIT_COUNT

	Address:

	[0x16]

	Default:

	[0x78]

Current monitoring counter

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CMONIT_COUNT:

	Current monitoring counter

CMONIT_MAX

	Address:

	[0x17]

	Default:

	[0x78]

Maximum counter value for current monitoring

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CMONIT_MAX:

	Maximum counter value for current monitoring

ID

	Address:

	[0x18]

	Default:

	[0x16]

Part type ID = 16h

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ID:

	Part type ID = 16h

CC_ADJ

	Address:

	[0x1B]

	Default:

	[0x0000]

Coulomb counter adjustment register

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CC_ADJ:

	Coulomb counter adjustment register

VM_ADJ

	Address:

	[0x1D]

	Default:

	[0x0000]

Voltage mode adjustment register

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	VM_ADJ:

	Voltage mode adjustment register

 BQ28Z

BQ28Z

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C

	RegMap: Register Map

	Datasheet: http://www.ti.com/lit/ds… [http://www.ti.com/lit/ds/symlink/bq28z610.pdf]

	DigiKey: 296-43394-1-ND [https://www.digikey.com/products/en?KeyWords=296-43394-1-ND]

	I2C Address: 0xAA

Description

Battery Fuel Gauge

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	DUMMY

	0x00

	uint16

	R

	0xDEAD

	dummy register

	ManufacturerAccess_ControlStatus

	0x00

	uint16

	RW

	0x0000

	Control Register

	AtRate

	0x02

	int16

	RW

	0x0000

	Read/Write. The value is a signed integer with the negative value indicating a discharge current value. The default value is 0 and forces AtRateTimeToEmpty() to return 65535.

	AtRateTimeToEmpty

	0x04

	uint16

	R

	0x0000

	This read-only function returns an unsigned integer value to predict remaining operating time based on battery discharge at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicates AtRate() = 0. The gas gauge updates the AtRateTimeToEmpty() within 1 s after the system sets the AtRate() value. The gas gauge updates these parameters every 1 s. The commands are used in NORMAL mode.

	Temperature

	0x06

	uint16

	R

	0x0000

	This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured by the gas gauge and is used for the gauging algorithm. It reports either InternalTemperature() or external thermistor temperature depending on the setting of the TEMPS bit in Pack configuration.

	Voltage

	0x08

	uint16

	R

	0x0000

	This read-only function returns an unsigned integer value of the measured cell pack in mV with a range of 0 12000 mV.

	BatteryStatus

	0x0A

	uint16

	R

	0x0000

	See the Flags register.

	Current

	0x0C

	int16

	R

	0x0000

	This read-only function returns a signed integer value that is the instantaneous current flow through the sense resistor. The value is updated every 1 s. Units are mA.

	MaxError

	0x0E

	uint8

	R

	0x00

	This read-word function returns the expected margin of error

	RemainingCapacity

	0x10

	uint16

	R

	0x0000

	This read-only command returns the predicted remaining capacity based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

	FullChargeCapacity

	0x12

	uint16

	R

	0x0000

	This read-only command returns the predicted capacity of the battery at full charge based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

	AverageCurrent

	0x14

	int16

	R

	0x0000

	This read-only function returns a signed integer value that is the average current flow through the sense resistor. The value is updated every 1 s. Units are mA.

	AverageTimeToEmpty

	0x16

	uint16

	R

	0x0000

	Uses average current value with a time constant of 15 s for this method. A value of 65535 means the battery is not being discharged.

	AverageTimeToFull

	0x18

	uint16

	R

	0x0000

	This read-only function returns a unsigned integer value predicting time to reach full charge for the battery in units of minutes based on AverageCurrent(). The computation accounts for the taper current time extension from linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.

	StandbyCurrent

	0x1A

	int16

	R

	0x0000

	This read-only function returns a signed integer value of measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially it will report the standby current programmed in initial standby and after several seconds in standby mode will report the measured standby. The register value is updated every 1 s when measured current is above the deadband and is less than or equal to 2 × initial standby. The first and last values that meet these criteria are not averaged in since they may not be stable values. To approximate to a 1-min time constant each new value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current and approximate 7% of the current measured average current.

	StandbyTimeToEmpty

	0x1C

	uint16

	R

	0x0000

	This read-only function returns a unsigned integer value predicting remaining battery life at standby rate of discharge in units of minutes. The computation uses Nominal Available Capacity (NAC) for the calculation. A value of 65535 indicates the battery is not being discharged.

	MaxLoadCurrent

	0x1E

	int16

	R

	0x0000

	This read-only function returns a signed integer value in units of mA of maximum load conditions. The MaxLoadCurrent() is an adaptive measurement which is initially reported as the maximum load current programmed in initial Max Load Current register. If the measured current is ever greater than the initial Max Load Current then the MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC of less than 50%. This will prevent the reported value from maintaining an unusually high value.

	MaxLoadTimeToEmpty

	0x20

	uint16

	R

	0x0000

	This read-only function returns a unsigned integer value predicting remaining battery life at the maximum discharge load current rate in units of minutes. A value of 65535 indicates that the battery is not being discharged.

	AveragePower

	0x22

	int16

	R

	0x0000

	This read-only function returns a signed integer value of average power during battery charging and discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.

	BTPDischargeSet

	0x24

	int16

	RW

	0x0000

	This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the RemCap drops below the set threshold in DF register.

	BTPChargeSet

	0x26

	int16

	RW

	0x0000

	This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.

	InternalTemperature

	0x28

	uint16

	R

	0x0000

	This read-only function returns an unsigned integer value of the measured internal temperature of the device in 0.1-k units measured by the gas gauge.

	CycleCount

	0x2A

	uint16

	R

	0x0000

	This read-only function returns an unsigned integer value of the number of cycles the battery has experienced a discharge (range 0 to 65535). One cycle occurs when accumulated discharge greater than or equal to CC threshold.

	RelativeStateOfCharge

	0x2C

	uint8

	R

	0x00

	This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as percentage of FullChargeCapacity() with a range of 0% to 100%.

	StateOfHealth

	0x2E

	uint8

	R

	0x00

	This read-only function returns an unsigned integer value expressed as a percentage of the ratio of predicted FCC (25C SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0% to 100% respectively.

	ChargeVoltage

	0x30

	uint16

	R

	0x0000

	Returns the desired charging voltage in mV to the charger

	ChargeCurrent

	0x32

	uint16

	R

	0x0000

	Returns the desired charging current in mA to the charger

	DesignCapacity

	0x3C

	uint16

	R

	0x0000

	In SEALED and UNSEALED access This command returns the value stored in Design Capacity and is expressed in mAh. This is intended to be a theoretical or nominal capacity of a new pack but should have no bearing on the operation of the gas gauge functionality.

	AltManufacturerAccess

	0x3E

	uint16

	R

	0x0000

	MAC Data block command

	MACData

	0x40

	uint16

	R

	0x0000

	MAC Data block

	SafetyAlert

	0x50

	uint32

	R

	0x00000000

	This command returns the SafetyAlert flags on AltManufacturerAccess or MACData.

	MACDataSum

	0x60

	uint8

	R

	0x00

	MAC Data block checksum

	MACDataLen

	0x61

	uint8

	R

	0x00

	MAC Data block length

Registers

DUMMY

	Address:

	[0x00]

	Default:

	[0xDEAD]

dummy register

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	BIT1

	BIT0

Flags

	BIT0:

	creates a flag at bit 0 of the DUMMY register

	BIT1:

	creates a flag at bit 1 of the DUMMY register

Fields

	REMAINING:

	creates a 14 bit field using the remaing bits

	Name

	Address

	Description

	MIN

	x00

	creates a macro for the minimum 14 bit value

	MAX

	x3fff

	creates a macro for the maximum 14 bit value

ManufacturerAccess_ControlStatus

	Address:

	[0x00]

	Default:

	[0x0000]

Control Register

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	SECURITY_Mode

	AUTHCALM

	CheckSumValid

	BTP_INT

	LDMD

	R_DIS

	VOK

	QMax

Flags

	AUTHCALM:

	Automatic Calibration Mode

	CheckSumValid:

	Checksum Valid

	BTP_INT:

	Battery Trip Point Interrupt. Setting and clearing this bit depends on various conditions

	LDMD:

	LOAD Mode

	R_DIS:

	Resistance Updates

	VOK:

	Voltage OK for QMax Update

	QMax:

	QMax Updates. This bit toggles after every QMax update.

Fields

	SECURITY_Mode:

	Security Mode

	Name

	Address

	Description

	Reserved

	b00

	Reserved

	Full_Access

	b01

	Full Access

	Unsealed

	b10

	Unsealed

	Sealed

	b11

	Sealed

AtRate

	Address:

	[0x02]

	Default:

	[0x0000]

Read/Write. The value is a signed integer with the negative value indicating a discharge current value. The default value is 0 and forces AtRateTimeToEmpty() to return 65535.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AtRate:

	Read/Write. The value is a signed integer with the negative value indicating a discharge current value. The default value is 0 and forces AtRateTimeToEmpty() to return 65535.

AtRateTimeToEmpty

	Address:

	[0x04]

	Default:

	[0x0000]

This read-only function returns an unsigned integer value to predict remaining operating time based on battery discharge at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicates AtRate() = 0. The gas gauge updates the AtRateTimeToEmpty() within 1 s after the system sets the AtRate() value. The gas gauge updates these parameters every 1 s. The commands are used in NORMAL mode.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AtRateTimeToEmpty:

	This read-only function returns an unsigned integer value to predict remaining operating time based on battery discharge at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicates AtRate() = 0. The gas gauge updates the AtRateTimeToEmpty() within 1 s after the system sets the AtRate() value. The gas gauge updates these parameters every 1 s. The commands are used in NORMAL mode.

Temperature

	Address:

	[0x06]

	Default:

	[0x0000]

This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured by the gas gauge and is used for the gauging algorithm. It reports either InternalTemperature() or external thermistor temperature depending on the setting of the TEMPS bit in Pack configuration.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	Temperature:

	This read-only function returns an unsigned integer value of temperature in units (0.1 k) measured by the gas gauge and is used for the gauging algorithm. It reports either InternalTemperature() or external thermistor temperature depending on the setting of the TEMPS bit in Pack configuration.

Voltage

	Address:

	[0x08]

	Default:

	[0x0000]

This read-only function returns an unsigned integer value of the measured cell pack in mV with a range of 0 12000 mV.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	Voltage:

	This read-only function returns an unsigned integer value of the measured cell pack in mV with a range of 0 12000 mV.

BatteryStatus

	Address:

	[0x0A]

	Default:

	[0x0000]

See the Flags register.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	TCA

	OTA

	TDA

	RCA

	RTA

	INIT

	DSG

	FC

	FD

	Error_Code

Flags

	FD:

	Fully Discharged

	FC:

	Fully Charged

	DSG:

	Discharging

	INIT:

	Initialization

	RTA:

	Remaining Time Alarm

	RCA:

	Remaining Capacity Alarm

	TDA:

	Terminate Discharge Alarm

	OTA:

	Overtemperature Alarm

	TCA:

	Terminate Charge Alarm

	OCA:

	Overcharged Alarm

Fields

	Error_Code:

	Error Code

	Name

	Address

	Description

	OK

	b0000

	OK

	Busy

	b0001

	Busy

	Reserved_Command

	b0010

	Reserved_Command

	Unsupported_Command

	b0011

	Unsupported_Command

	AccessDenied

	b0100

	AccessDenied

	Overflow_Underflow

	b0101

	Overflow_Underflow

	BadSize

	b0110

	BadSize

	UnknownError

	b0111

	UnknownError

Current

	Address:

	[0x0C]

	Default:

	[0x0000]

This read-only function returns a signed integer value that is the instantaneous current flow through the sense resistor. The value is updated every 1 s. Units are mA.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	Current:

	This read-only function returns a signed integer value that is the instantaneous current flow through the sense resistor. The value is updated every 1 s. Units are mA.

MaxError

	Address:

	[0x0E]

	Default:

	[0x00]

This read-word function returns the expected margin of error

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MaxError:

	This read-word function returns the expected margin of error

RemainingCapacity

	Address:

	[0x10]

	Default:

	[0x0000]

This read-only command returns the predicted remaining capacity based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	RemainingCapacity:

	This read-only command returns the predicted remaining capacity based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

FullChargeCapacity

	Address:

	[0x12]

	Default:

	[0x0000]

This read-only command returns the predicted capacity of the battery at full charge based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	FullChargeCapacity:

	This read-only command returns the predicted capacity of the battery at full charge based on rate (per configured Load Select) temperature present depth-of-discharge and stored impedance. Values are reported in mAh.

AverageCurrent

	Address:

	[0x14]

	Default:

	[0x0000]

This read-only function returns a signed integer value that is the average current flow through the sense resistor. The value is updated every 1 s. Units are mA.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AverageCurrent:

	This read-only function returns a signed integer value that is the average current flow through the sense resistor. The value is updated every 1 s. Units are mA.

AverageTimeToEmpty

	Address:

	[0x16]

	Default:

	[0x0000]

Uses average current value with a time constant of 15 s for this method. A value of 65535 means the battery is not being discharged.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AverageTimeToEmpty:

	Uses average current value with a time constant of 15 s for this method. A value of 65535 means the battery is not being discharged.

AverageTimeToFull

	Address:

	[0x18]

	Default:

	[0x0000]

This read-only function returns a unsigned integer value predicting time to reach full charge for the battery in units of minutes based on AverageCurrent(). The computation accounts for the taper current time extension from linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AverageTimeToFull:

	This read-only function returns a unsigned integer value predicting time to reach full charge for the battery in units of minutes based on AverageCurrent(). The computation accounts for the taper current time extension from linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.

StandbyCurrent

	Address:

	[0x1A]

	Default:

	[0x0000]

This read-only function returns a signed integer value of measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially it will report the standby current programmed in initial standby and after several seconds in standby mode will report the measured standby. The register value is updated every 1 s when measured current is above the deadband and is less than or equal to 2 × initial standby. The first and last values that meet these criteria are not averaged in since they may not be stable values. To approximate to a 1-min time constant each new value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current and approximate 7% of the current measured average current.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	StandbyCurrent:

	This read-only function returns a signed integer value of measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially it will report the standby current programmed in initial standby and after several seconds in standby mode will report the measured standby. The register value is updated every 1 s when measured current is above the deadband and is less than or equal to 2 × initial standby. The first and last values that meet these criteria are not averaged in since they may not be stable values. To approximate to a 1-min time constant each new value of StandbyCurrent() is computed by taking approximate 93% weight of the last standby current and approximate 7% of the current measured average current.

StandbyTimeToEmpty

	Address:

	[0x1C]

	Default:

	[0x0000]

This read-only function returns a unsigned integer value predicting remaining battery life at standby rate of discharge in units of minutes. The computation uses Nominal Available Capacity (NAC) for the calculation. A value of 65535 indicates the battery is not being discharged.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	StandbyTimeToEmpty:

	This read-only function returns a unsigned integer value predicting remaining battery life at standby rate of discharge in units of minutes. The computation uses Nominal Available Capacity (NAC) for the calculation. A value of 65535 indicates the battery is not being discharged.

MaxLoadCurrent

	Address:

	[0x1E]

	Default:

	[0x0000]

This read-only function returns a signed integer value in units of mA of maximum load conditions. The MaxLoadCurrent() is an adaptive measurement which is initially reported as the maximum load current programmed in initial Max Load Current register. If the measured current is ever greater than the initial Max Load Current then the MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC of less than 50%. This will prevent the reported value from maintaining an unusually high value.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MaxLoadCurrent:

	This read-only function returns a signed integer value in units of mA of maximum load conditions. The MaxLoadCurrent() is an adaptive measurement which is initially reported as the maximum load current programmed in initial Max Load Current register. If the measured current is ever greater than the initial Max Load Current then the MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC of less than 50%. This will prevent the reported value from maintaining an unusually high value.

MaxLoadTimeToEmpty

	Address:

	[0x20]

	Default:

	[0x0000]

This read-only function returns a unsigned integer value predicting remaining battery life at the maximum discharge load current rate in units of minutes. A value of 65535 indicates that the battery is not being discharged.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MaxLoadTimeToEmpty:

	This read-only function returns a unsigned integer value predicting remaining battery life at the maximum discharge load current rate in units of minutes. A value of 65535 indicates that the battery is not being discharged.

AveragePower

	Address:

	[0x22]

	Default:

	[0x0000]

This read-only function returns a signed integer value of average power during battery charging and discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AveragePower:

	This read-only function returns a signed integer value of average power during battery charging and discharging. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.

BTPDischargeSet

	Address:

	[0x24]

	Default:

	[0x0000]

This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the RemCap drops below the set threshold in DF register.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	BTPDischargeSet:

	This command sets the OperationStatusA BTP_INT and the BTP_INT pin will be asserted when the RemCap drops below the set threshold in DF register.

BTPChargeSet

	Address:

	[0x26]

	Default:

	[0x0000]

This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	BTPChargeSet:

	This command clears the OperationStatusA BTP_INT and the BTP_INT pin will be deasserted.

InternalTemperature

	Address:

	[0x28]

	Default:

	[0x0000]

This read-only function returns an unsigned integer value of the measured internal temperature of the device in 0.1-k units measured by the gas gauge.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	InternalTemperature:

	This read-only function returns an unsigned integer value of the measured internal temperature of the device in 0.1-k units measured by the gas gauge.

CycleCount

	Address:

	[0x2A]

	Default:

	[0x0000]

This read-only function returns an unsigned integer value of the number of cycles the battery has experienced a discharge (range 0 to 65535). One cycle occurs when accumulated discharge greater than or equal to CC threshold.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	CycleCount:

	This read-only function returns an unsigned integer value of the number of cycles the battery has experienced a discharge (range 0 to 65535). One cycle occurs when accumulated discharge greater than or equal to CC threshold.

RelativeStateOfCharge

	Address:

	[0x2C]

	Default:

	[0x00]

This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as percentage of FullChargeCapacity() with a range of 0% to 100%.

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	RelativeStateOfCharge:

	This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as percentage of FullChargeCapacity() with a range of 0% to 100%.

StateOfHealth

	Address:

	[0x2E]

	Default:

	[0x00]

This read-only function returns an unsigned integer value expressed as a percentage of the ratio of predicted FCC (25C SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0% to 100% respectively.

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	StateOfHealth:

	This read-only function returns an unsigned integer value expressed as a percentage of the ratio of predicted FCC (25C SoH Load Rate) over the DesignCapacity(). The range is 0x00 to 0x64 for 0% to 100% respectively.

ChargeVoltage

	Address:

	[0x30]

	Default:

	[0x0000]

Returns the desired charging voltage in mV to the charger

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ChargeVoltage:

	Returns the desired charging voltage in mV to the charger

ChargeCurrent

	Address:

	[0x32]

	Default:

	[0x0000]

Returns the desired charging current in mA to the charger

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	ChargeCurrent:

	Returns the desired charging current in mA to the charger

DesignCapacity

	Address:

	[0x3C]

	Default:

	[0x0000]

In SEALED and UNSEALED access This command returns the value stored in Design Capacity and is expressed in mAh. This is intended to be a theoretical or nominal capacity of a new pack but should have no bearing on the operation of the gas gauge functionality.

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	DesignCapacity:

	In SEALED and UNSEALED access This command returns the value stored in Design Capacity and is expressed in mAh. This is intended to be a theoretical or nominal capacity of a new pack but should have no bearing on the operation of the gas gauge functionality.

AltManufacturerAccess

	Address:

	[0x3E]

	Default:

	[0x0000]

MAC Data block command

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	AltManufacturerAccess:

	MAC Data block command

MACData

	Address:

	[0x40]

	Default:

	[0x0000]

MAC Data block

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MACData:

	MAC Data block

SafetyAlert

	Address:

	[0x50]

	Default:

	[0x00000000]

This command returns the SafetyAlert flags on AltManufacturerAccess or MACData.

	Bit

	31

	30

	29

	28

	27

	26

	25

	24

	23

	22

	21

	20

	19

	18

	17

	16

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	UTD

	UTC

	CTOS

	PTOS

	OTD

	OTC

	ASCD

	ASCC

	AOLD

	OCD

	OCC

	COV

	CUV

Flags

	UTD:

	Undertemperature During Discharge

	UTC:

	Undertemperature During Charge

	CTOS:

	Charge Timeout Suspend

	PTOS:

	Precharge Timeout Suspend

	OTD:

	Overtemperature During Discharge

	OTC:

	Overtemperature During Charge

	ASCD:

	Short-Circuit During Discharge

	ASCC:

	Short-Circuit During Charge

	AOLD:

	Overload During Discharge

	OCD:

	Overcurrent During Discharge

	OCC:

	Overcurrent During Charge

	COV:

	Cell Overvoltage

	CUV:

	Cell Undervoltage

MACDataSum

	Address:

	[0x60]

	Default:

	[0x00]

MAC Data block checksum

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MACDataSum:

	MAC Data block checksum

MACDataLen

	Address:

	[0x61]

	Default:

	[0x00]

MAC Data block length

	Bit

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	MACDataLen:

	MAC Data block length

 Audio

Audio

Audio

	wm8731

 wm8731

wm8731

	Generated with MrT Device Utility [https://github.com/uprev-mrt/mrtutils/wiki/mrt-device]

	Bus: I2C, SPI

	RegMap: Register Map

	Datasheet: https://statics.cirrus.c… [https://statics.cirrus.com/pubs/proDatasheet/WM8731_v4.9.pdf]

	DigiKey: WM8731CSEFL-ND [https://www.digikey.com/products/en?KeyWords=WM8731CSEFL-ND]

	I2C Address: 0x34

Description

Aduio codec

Register Map

	Name

	Address

	Type

	Access

	Default

	Description

	LEFT_IN

	0x00

	uint16

	W

	0x0097

	Left line in control

	RIGHT_IN

	0x01

	uint16

	W

	0x0097

	Right line in control

	LEFT_OUT

	0x02

	uint16

	W

	0x0079

	Left Headphone Out control

	RIGHT_OUT

	0x03

	uint16

	W

	0x0079

	Right Headphone Out control

	AN_PATH

	0x04

	uint16

	W

	0x000A

	analog audio path control

	DIG_PATH

	0x05

	uint16

	W

	0x0008

	Digital audio path control

	POWER_DWN

	0x06

	uint16

	W

	0x009F

	Power Down control

	DIG_IFACE

	0x07

	uint16

	W

	0x009F

	Digital audio interface format

	SAMPLE

	0x08

	uint16

	W

	0x0000

	Sampling control

	ACTIVE

	0x09

	uint16

	W

	0x0000

	Active Control

	RESET

	0x0F

	uint16

	W

	0x0FFF

	Reset control

Registers

LEFT_IN

	Address:

	[0x00]

	Default:

	[0x0097]

Left line in control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	LRINBOTH

	MUTE

	VOLUME

Flags

	MUTE:

	Mutes Left input

	LRINBOTH:

	Left to Right Channel Line Input Volume and Mute Data Load Control

Fields

	VOLUME:

	Volume control for Left input in 1.5dB steps range -34.5dB -> +12dB

	Name

	Value

	Descriptions

	MIN

	b00000

	-34.5dB

	0dB

	b10101

	0db Gain

	MAX

	b11111

	+12dB

	STEP

	b00001

	1.5dB Step

RIGHT_IN

	Address:

	[0x01]

	Default:

	[0x0097]

Right line in control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	LRINBOTH

	MUTE

	VOLUME

Flags

	MUTE:

	Mutes Right input

	LRINBOTH:

	Left to Right Channel Line Input Volume and Mute Data Load Control

Fields

	VOLUME:

	Volume control for right input in 1.5dB steps range -34.5dB -> +12dB

	Name

	Value

	Descriptions

	MIN

	b00000

	minimum -34.5dB

	0dB

	b10101

	0db Gain

	MAX

	b11111

	maximum +12dB

	STEP

	b00001

	1.5dB Step

LEFT_OUT

	Address:

	[0x02]

	Default:

	[0x0079]

Left Headphone Out control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	LEFT_OUT:

	Left Headphone Out control

RIGHT_OUT

	Address:

	[0x03]

	Default:

	[0x0079]

Right Headphone Out control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	RIGHT_OUT:

	Right Headphone Out control

AN_PATH

	Address:

	[0x04]

	Default:

	[0x000A]

analog audio path control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	SIDEATT

	SIDETONE

	DACSEL

	BYPASS

	INSEL

	MUTEMIC

	MICBOOST

Flags

	MICBOOST:

	Microphone Input Level Boost

	MUTEMIC:

	Mute Mic input to ADC

	INSEL:

	Selects input between Mic and Line-in

	BYPASS:

	Combines Line-in signal to Output

	DACSEL:

	DAC Select

	SIDETONE:

	Combines Mic signal to Output

Fields

	SIDEATT:

	Side Tone attenuation

	Name

	Value

	Descriptions

	6dB

	b00

	6dB of attenuation

	9dB

	b01

	9dB of attenuation

	12dB

	b10

	12dB of attenuation

	15dB

	b11

	15dB of attenuation

DIG_PATH

	Address:

	[0x05]

	Default:

	[0x0008]

Digital audio path control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	HPOR

	DACMU

	DEEMP

	ADCHPD

Flags

	ADCHPD:

	ADC High Pass Filter

	DACMU:

	DAC Soft Mute

	HPOR:

	Store dc offset when High Pass Filter disabled

Fields

	DEEMP:

	De-emphasis Control

	Name

	Value

	Descriptions

	DIS

	b00

	Disable

	32kHz

	b01

	32 kHz

	44_1kHz

	b10

	44.1 kHz

	48kHz

	b11

	48 kHz

POWER_DWN

	Address:

	[0x06]

	Default:

	[0x009F]

Power Down control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	POWEROFF

	CLKOUTPD

	OSCPD

	OUTPD

	DACPD

	ADCPD

	MICPD

	LINEINPD

Flags

	LINEINPD:

	Line Input Power Down

	MICPD:

	Microphone Input an Bias PowerDown

	ADCPD:

	ADC Power Dow

	DACPD:

	DAC Power Down

	OUTPD:

	Powers down ALL outputs including digital

	OSCPD:

	Oscillator Power Down

	CLKOUTPD:

	CLKOUT power down

	POWEROFF:

	POWEROFF mode

DIG_IFACE

	Address:

	[0x07]

	Default:

	[0x009F]

Digital audio interface format

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	BLCKINV

	MASTER_MODE

	LRSWAP

	LRP

	IWL

	FORMAT

Flags

	BLCKINV:

	Inverts the bit clock

	MASTER_MODE:

	Enables Master mode

	LRSWAP:

	Swaps LR clock polarity

	LRP:

	DACLRC phase control (in left, right or I2S modes)

Fields

	IWL:

	Word Length. Audio data size

	Name

	Value

	Descriptions

	32BIT

	b11

	32 bit sample size

	24BIT

	b10

	24 bit sample size

	20BIT

	b01

	20 bit sample size

	16BIT

	b00

	16 bit sample size

	FORMAT:

	Selects digital audio format

	Name

	Value

	Descriptions

	RIGHT_JUST

	b00

	MSB-First right justified

	LEFT_JUST

	b01

	MSB-first left justified

	I2S

	b10

	I2S format. MSB-First left -1 justified

	DSP

	b11

	DSP Mode. frame sync + 2 data packed words

SAMPLE

	Address:

	[0x08]

	Default:

	[0x0000]

Sampling control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	

Fields

	SAMPLE:

	Sampling control

ACTIVE

	Address:

	[0x09]

	Default:

	[0x0000]

Active Control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	Enable

Flags

	Enable:

	Enables Digital Audio interface

RESET

	Address:

	[0x0F]

	Default:

	[0x0FFF]

Reset control

	Bit

	15

	14

	13

	12

	11

	10

	9

	8

	7

	6

	5

	4

	3

	2

	1

	0

	Field

	
	RESET

Fields

	RESET:

	Setting to 0 resets the device

 FPGA

FPGA

FPGA

	Spartan6

 Spartan6

Spartan6

Datasheet: https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf

>Partnumber: 6SLX9TQG144Driver for configuring Spartan 6 FPGA using an 8 bit selectmap interface

 RegDevice

RegDevice

This module provides a generic driver for accessing register based devices. It supports devices on both I2C and SPI buses. Since most register based devices use the same access scheme, this provides a consistent base for device drivers.

mrt-device

The recomendded method for creating device drivers based on this module,is to use the mrt-device which is part of the mrt-utils toolset. This provides a very consistent usage of the regdev module, and also creates an easily parseable device file as a byproduct. This can be used for better documentation as well as a basis for automated testing of hardware.

pip3 install mrtutils

Step 1: Define device:

Devices are defined with a YAML file.

To generate a blank template:
.. code-block:: bash

mrt-device -t /path/to/file.yml

The descriptor file contains device information such as part numbers, links to datashees, and other relevant information. It also contains definitions of registers and data structures on the device. The entities in the definition are:

registers

registeres are individualy addressable memory registers on the device. each register can have the folowing attributes:

	addr:

	register address on device

	type:

	register type, (default is uin8_t)

	perm:

	premissions on register R for read, W for write

	desc:

	description of register. used for code documentation

	default:

	default value of the register

fields

fields are data fields contained in registers. They are grouped by register and they contain the following attributes:

	mask:

	this specifies the mask for the field. This is used to mask and shift data to match the field.

	vals:

	this is a list of possible values and their descriptions for the field.

Note

If a field is defined with a single bit mask, and no values, it is interpretted as a ‘flag’. Flag fields have macros generated for setting, clearing, and checking them.

Then fill out the template. example from `hts221 driver <https://github.com/uprev-mrt/device-hts221`_ :

name: HTS221
description: Humidity and Temperature Sensor
category: Device
requires: [RegDevice,Platform]
datasheet: https://www.st.com/content/ccc/resource/technical/document/datasheet/4d/9a/9c/ad/25/07/42/34/DM00116291.pdf/files/DM00116291.pdf/jcr:content/translations/en.DM00116291.pdf
mfr: STMicroelectronics
mfr_pn: HTS221TR
digikey_pn: 497-15382-1-ND

prefix: HTS
bus: I2C
i2c_addr: 0xBE

registers:
- WHO_AM_I: { addr: 0x0F , type: uint8_t, perm: R, desc: Id Register, default: 0xBC}
- AV_CONF: { addr: 0x10 , type: uint8_t, perm: RW, desc: Humidity and temperature resolution mode}
- CTRL1: { addr: 0x20 , type: uint8_t, perm: RW, desc: Control register 1}
- CTRL2: { addr: 0x21 , type: uint8_t, perm: RW, desc: Control register 2}
- CTRL3: { addr: 0x22 , type: uint8_t, perm: RW, desc: Control register 3}
- STATUS: { addr: 0x27 , type: uint8_t, perm: R, desc: Status register}
- HUMIDITY_OUT: { addr: 0x28 , type: int16_t, perm: R, desc: Relative humidity data }
- TEMP_OUT: { addr: 0x2A , type: int16_t, perm: R, desc: Temperature data}

- H0_rH_x2: { addr: 0x30 , type: uint8_t, perm: R, desc: Calibration data}
- H1_rH_x2: { addr: 0x31 , type: uint8_t, perm: R, desc: Calibration data}
- T0_DEGC_x8: { addr: 0x32 , type: uint8_t, perm: R, desc: Calibration data}
- T1_DEGC_x8: { addr: 0x33 , type: uint8_t, perm: R, desc: Calibration data}
- T1T0_MSB: { addr: 0x35 , type: uint8_t, perm: R, desc: Calibration data}
- H0_T0_OUT: { addr: 0x36 , type: int16_t, perm: R, desc: Calibration data}
- H1_T0_OUT: { addr: 0x3A , type: int16_t, perm: R, desc: Calibration data}
- T0_OUT: { addr: 0x3C , type: int16_t, perm: R, desc: Calibration data}
- T1_OUT: { addr: 0x3E , type: int16_t, perm: R, desc: Calibration data}

fields:
 - STATUS:
 - TEMP_READY: { mask: 0x01, desc: indicates that a temperature reading is ready }
 - HUM_READY: { mask: 0x02, desc: indicates that a humidity reading is ready }

 - CTRL1:
 - ODR:
 mask: 0x07
 vals:
 - ONESHOT: { val: 0, desc: readings must be requested}
 - 1HZ: { val: 1, desc: 1 hz sampling}
 - 7HZ: { val: 2, desc: 7 hz sampling}
 - 12_5HZ: { val: 3, desc: 12.5 hz sampling}

Step 2: generate the code

To generate the code, use mrt-device and specify an input and an output path:

mrt-device -i device.yaml -o .

The tool will generate 3 files (using hts221 [https://github.com/uprev-mrt/device-hts221] as an example):

	hts221.h:

	header file for driver

	hts221.c:

	Source file for driver

	hts221_dev.h:

	Macros generated from device file. this contains macros for addresses, values, masks, and functions for accessing fields/flags in registers.

Step 3: customize

This will provide a good base with access to all of the register. To add more functionality you can add to the code. If you want to ability to modify the device file further, keep your code inside of the ‘user code’ blocks provided:

/*user-block-init-start*/
/*user-block-init-end*/

If the device does not follow the normal register access schemes, you can specify your own, and redirect the mrt_regdev_t fRead and fWrite function pointers to them.

/**
*@brief writes buffer to address of device
*@param dev ptr to generic register device
*@param addr address in memory to write
*@param data ptr to data to be written
*param len length of data to write
*@return status (type defined by platform)
*/
mrt_status_t my_write_function(mrt_regdev_t* dev, uint32_t addr, uint8_t* data,int len);

static mrt_status_t hts_init(hts221_t* dev)
{
 /*user-block-init-start*/
 dev->mRegDev.fWrite = my_write_function;
 /*user-block-init-end*/
 return MRT_STATUS_OK;
}

 Architecture

Architecture

At its core MrT is just a git repository that contains a bunch of reusable submodules. mrt-config [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-config.html] is just a tool that lets you browse submodules from that repo remotely, and add them to your own repo.

[image: ../../_images/architecture.dio.png]

Custom Remotes

By default mrt-config [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-config.html] will use UpRev-MrT [https://gitlab.com/uprev/public/mrt/MrT-Meta] as the remote repo, but you can actually use any remote repo using the -r option. This allows users to maintain custom sets of modules and private repos.

It works by parsing the .gitmodules file, so it will work with any repo that has submodules, there are no special files required.

mrt.yml files

Even though the tool will work on repos without any special files, mrt.yml files can extend the functionality. If you run the mrt-doc [https://mrt.readthedocs.io/en/latest/pages/mrtutils/mrt-doc.html] tool in the root of a repo, it will check all of the submodule paths in that repo for mrt.yml files and combine them into a root mrt.yml file. The main use for this is to gather all of the requirements for the submodules, so when you select one in the mrt-config tool, it can automatically select the dependencies.

 Adding Modules

Adding Modules

This section covers the information needed for contributors to add modules to the framework

Contents:

	Creating a Module

	Platform Modules

	Device Modules

	Utility Modules

 Creating a Module

Creating a Module

mrt-config works by grabbing the list of submodules in the main uprev-mrt [https://gitlab.com/uprev/public/mrt/MrT-Meta] repo . When you import a module into your project, it adds that submodule to your project using the same relative path it has in the main repo.

So to add a module, you need to create a repo for the module, and then add it as a submodule to the uprev-mrt [https://gitlab.com/uprev/public/mrt/MrT-Meta] repo.

Note

Repo names for modules should be all lowercase and hyphenated with the module category as a prefix. example: the Fifo module’s repo is utility-fifo

mrt.yml file

Every module should contain an mrt.yml file with a name, description, category, and requires field

example from Fifo module:

name: fifo
description: generic fifo utility
category: utility
requires: []

Once you have the basic module added, you can begin adding code. The modules structure will vary based on what type of module it is. See below for specifics when adding a Platform , Device , or Utility module

 Platform Modules

Platform Modules

Platform modules are meants to abstract any IO operations. This can normally be done by typdefing native platform types to the mrt_xx_t equivalent, and using a macro to pass through operation. In some cases, you may have to get a little creative to make it work, but the macros make the system pretty flexible.

When adding a platform, the header and symbol must be added to Platforms/Common/mrt_platform.h

example from Platforms/Common/mrt_platform.h

...

#if MRT_PLATFORM == MRT_STM32_HAL
 #include "Platforms/STM32/stm32_hal_abstract.h"
 #define MRT_PLATFORM_STRING "STM32_HAL"
 #include "platform_check.h"
#endif

...

Then in the header for the module, you can abstract the various IO operations.

Delay Abstraction

	MRT_DELAY_MS(ms)

Uart Abstraction

	typedef xx mrt_uart_handle_t;

	MRT_UART_TX(handle, data, len, timeout)

	MRT_UART_RX(handle, data, len, timeout)

GPIO Abstraction

	typedef xx mrt_gpio_t

	MRT_GPIO_WRITE(pin,val)

	MRT_GPIO_READ(pin)

	MRT_GPIO_PORT_WRITE(port, mask, val)

	MRT_GPIO_PORT_READ(port)

I2C Abstraction

	typedef xx mrt_i2c_handle_t

	MRT_I2C_MASTER_TRANSMIT(handle ,addr,data,len, stop, timeout)

	MRT_I2C_MASTER_RECEIVE(handle ,addr, data, len, stop, timeout)

	MRT_I2C_MEM_WRITE(handle, addr, mem_addr, mem_size, data, len, timeout)

	MRT_I2C_MEM_READ(handle, addr, mem_addr, mem_size, data, len, timeout)

SPI Abstraction

	typedef xx mrt_spi_handle_t

	MRT_SPI_TRANSFER(handle ,tx, rx ,len, timeout)

	MRT_SPI_TRANSMIT(handle, tx, len, timeout)

	MRT_SPI_RECIEVE(handle, tx, len, timeout)

Mutex Abstraction

	MRT_MUTEX_TYPE

	MRT_MUTEX_CREATE(m)

	MRT_MUTEX_LOCK(m)

	MRT_MUTEX_UNLOCK(m)

	MRT_MUTEX_DELETE(m)

printf

	MRT_PRINTF(f_, …)

Note

Not every function has to be used. Any undefined functions will be defined as NOP() and a warning will be displayed at compile time to let the user know the function is not available on the platform.

Example from Platforms/Atmel

...

//Delay Abstraction
#define MRT_DELAY_MS(ms) delay_ms(ms)

//Uart Abstraction
typedef struct io_descriptor* mrt_uart_handle_t;
#define MRT_UART_TX(handle, data, len, timeout) io_write(handle, data, len)
#define MRT_UART_RX(handle, data, len, timeout) io_read(handle, data, len)

//GPIO Abstraction
typedef uint8_t mrt_gpio_t;
typedef enum gpio_port mrt_gpio_port_t;
#define MRT_GPIO_WRITE(pin,val) gpio_set_pin_level(pin,val)
#define MRT_GPIO_READ(pin) gpio_get_pin_level(pin)
#define MRT_GPIO_PORT_WRITE(port, mask, val) gpio_set_port_level(port, mask, val)
#define MRT_GPIO_PORT_READ(port) gpio_get_port_level(port)

//printf
#define MRT_PRINTF(f_, ...) printf((f_), __VA_ARGS__)

...

 Device Modules

Device Modules

Devices are the most commonly added module type, because every project has unique hardware. The main thing to keep in mind with a Device module, is that all of the IO operations must go through an abstracted platform function. This means you can not use any native IO calls. For instance all GPIO writes must use MRT_GPIO_WRITE(), and all UART transmits must use MRT_UART_TX() etc.

The mrtutils package contains a tool called mrt-device that can be used to create device drivers for register based devices.

 Utility Modules

Utility Modules

Utilities are the easiest modules to add, because they do not have to interact with hardware. Because these modules can be run on any system, they are all required to have a unit test with 80% code coverage.

 Coding Practices

Coding Practices

All of the modules should be written in pure C since the goal is to be reusable across many embedded platforms.

Documentation

All Modules should include a ‘README.rst’ file in the root of the modules directory. The README files are automatically combined and updated in the Reference section of this page.
If the documentation contains references to other pages or images, they must be in a subdirectory named ‘doc’.

Note

README.md files are also supported, but rst is preferred

Code Comments

All public functions should be documented using doxygen style comments:

/**
 *@brief Draws a bitmap to the buffer
 *@param gfx ptr to mono_gfx_t descriptor
 *@param x x coord to begin drawing at
 *@param y y coord to begin drawing at
 *@param bmp bitmap to draw
 *@param val pixel value on
 *@return status of operation
 */
mrt_status_t mono_gfx_draw_bmp(mono_gfx_t* gfx, int x, int y,const GFXBmp* bmp, uint8_t val);

Unit Tests

The Unit Tester for MrT recursively searches the modules for any file ending with ‘_UT.cpp’, and adds them to the GTest project. To add a Unit test to a module just add a file that ends with _UT.cpp.

Note

To keep projects from trying to compile the Unit test files, they are wrapped with #ifdef UNIT_TESTING_ENABLED .. #endif //UNIT_TESTING_ENABLED

Pull Requests

Because modules are typically developed as part of a seperate project, Pull Requests for the module should be reviewed along with the code for that project. There currently is not support for this on Bitbucket Cloud, but I am looking into a solution for this.

 Index

Index

 <no title>

 Modules

Modules

Modules

	Utilities
	GFX
	ColorGfx

	Audio
	utility-audio-test

	utility-AudioXcoder

	Interfaces
	Gatt Interface

	OTA

	CRC

	ByteFifo

	COBS

	PolyPacket

	Fifo

	Platforms
	Platform-NRF5

	Linux

	ESP32

	STM32

	Atmel

	Common

	Devices
	Memory
	FL-S Series NOR Flash Memory

	SpiFlash

	Displays
	ST727A

	Device Driver for SSD1306 based oled displays

	ERCxxLcd

	Tri-Color E-ink display

	IO
	opex

	MotorDrivers
	STSPIN220

	Biometric
	ANV401 Fingerprint Sensor

	Sensors
	sht31

	LIS2DH12

	HTS221

	Device-LSM6D

	RF
	device-nrf24

	Power
	README

	stc3117

	BQ28Z

	Audio
	wm8731

	FPGA
	Spartan6

	RegDevice

 <no title>

 Device-Eeprom

 <no title>

 VL53L0x Device

 	 Generated with MrT Device Utility

 	 Bus: I2C

 	 RegMap: Register Map
 	Datasheet: https://www.st.com/resou...

 	 DigiKey: 497-16538-2-ND

 	 I2C Address: 0x52

 Debugging with ESP32 using JLink debugger

Debugging with ESP32 using JLink debugger

This document assumes that the esp toolchain is installed in a directory names ‘esp’ which will be referenced as ESP_PATH

Install JLink software

To see if this is already installed:

JLinkExe

If is not installed, Download the latest package from:
https://www.segger.com/downloads/jlink/

Install Openocd for esp32

cd ESP_PATH
wget https://github.com/espressif/openocd-esp32/releases/download/v0.10.0-esp32-20190313/openocd-esp32-linux64-0.10.0-esp32-20190313.tar.gz
tar -xzf ~/Downloads/xtensa-esp32-elf-linux64-1.22.0-80-g6c4433a-5.2.0.tar.gz
tar -xzf openocd-esp32-linux64-0.10.0-esp32-20190313.tar.gz

Start OpenOcd

Make sure device is connected.

This step will start up the gdb server and connect to the target device.

cd ESP_PATH/openocd-esp32
bin/openocd -s share/openocd/scripts -f interface/jlink.cfg -f board/esp32-wrover.cfg

If you are using a module other that the wrover , there are more options. Look through ESP_PATH/openocd-esp32/openocd/scripts/board

Create gdbinit file for project

Create a file in your projects root directory named ‘.gdbinit’. Copy and paste these contents:

target remote :3333
set remote hardware-watchpoint-limit 2
mon reset halt
flushregs
thb app_main
c

Debug!

Once those steps are done build the project and flash the board with the normal process. Then connect to the gdb server :

xtensa-esp32-elf-gdb -x gdbinit path/to/project.elf

This will give you a command line gdb console. If you prefer to use a gui debugger, just make sure that it is set up to call xtensa-esp32-elf-gdb, and it should work the same.

 <no title>

 utility-json

_images/poly.png
[ota protocoll

agent Profile 'otaHost' Loaded

TCP trying localhost:8026

TCP Connected

_images/polypacket.png

_images/mrt-config-gui.png
X Mr Tmodule tool

- [root
- [Modules
- [Platforms
Common
stz

stmel
esp2

-0
MonoGix
- 0] Audio
Coder
TestData
o
Polypacket
sson
coes
- [Devices
-) Displaye
Erchonolc
TiColrE-ink
- [Sensors
Lswep
HTs221
us212
isL0x
- 1 PeA
Spartans
- 1 temary
SpiFlasn
Eeprom
- 1 power
80287
- [Audio
w7
Regbevice
Tools
Test

UpRev-MrT
UpRew Mol Reusabity and Testing

M s 2 collction o reusable modules that can be sasl integrated into new projects. Each module i designed and maintained according to qudelines and
SHandard 1 keap consitency. Th alows unform rmplamentagon. documentaian and te2Eng,

Using Mr T for a project:
The W Confi tool allos you o asily dd W submoduls o you project.
bash pip3 isntall artutils

Notes MrT Morules are addd 32 git sub-madules, 20 make sure that you have seeady intiaized your project 55 3 Gt repo.

i <path/to/projects nrt-config <relative/path/ for/NrT) root This willapen up the config gui and et you select madules tobe importe.

Modules
Platforms

Platforms are abstractions for spacfc plaiorms. This could be an S or an MCU family. Each patform contais abstracted nterface such as GPIO, Uart, 591,
2 2 Thi 2w Ene SEVicS Mo 13 Nave 3 common itarface for 31 patforme

Devices are modules for supparting commonly used 1 n projects. This would incude common sensars, fiash/esprom memry, diplays, battery charge
Conroiers, te

Deevice modules contin all the logic neade for theiroperation and communicate sing abstracted ntarface from platform modules
Utiities

Utites are maxules tha provide a commen functionaliy with no nead for abstractin, hat i, they do not depend on any specific hardware o platform.
Thess include Fios, Hashing Functions, ncoders/decoders, and messaging proocols.

Test

Import Submodules.

_images/mrt-config.png
@ joson@DESKTOP-S642A8F: ~/uprev/advantage.Software/front_panel_stm32

S Utilities

Interfaces
[] Fifo

[*] PolyPacket
[*] 350N

[*] coss

[] Byterifo

[Space/Enter] Toggle/enter [ESC] Leave menu [S] save

[0] Load [2] Symbol info [/] Jump to symbo:

[F] Toggle shou-help mode [C] Toggle show-name mode [A] Toggle shou-all mode
[0] Quit (prompts for save) [D] Save minimal config (advanced)

_static/file.png

_images/verify.png
>>> discover
Discovery Complete!

Disk/Partition
envm/bootloader
envn/firmware
spi-flash/bootloader
spi-flash/firmware
spi-flash/fpga

Address

©x00000000
©x00005DCO
©x00000000
©x00005DCO
0x0003E800

Used/size

0B/24.0K
0B/232.0K
0B/24.0K
23.8K/232.6K
©B/116.6K

Version

CRC

©x00000000
©x00000000
©x00000000
OxC829F23F
©x00000000

Flags

_static/logo.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Home

_images/flash.png
>>> flash (file: firmware.hex

100%

addr: @)

spi-flash/firmuare

Flashing Complete

_images/git_tree_auto.png
Graph

Description

o Merge branch ‘testbranch’

=
change1

more lines

bump patc

bump

(&1 010) bump minor
bump patch

adding version file
added ines

init

2 May 2021 19:12
2May 2021 19112
2 Ma